Abstract
We have studied the effects of agonist and antagonist binding, agonist-induced activation and agonist-induced desensitization of the human tachykinin NK2 receptor mutated at polar residues Asn-51 [in transmembrane helix 1 (TM1)], Asp-79 (TM2) and Asn-303 (TM7), which are highly conserved in the transmembrane domain in the rhodopsin family of G-protein-coupled receptors. Wild-type and mutant receptors were expressed in both COS-1 cells and Xenopus oocytes. The results show that the N51D mutation results in a receptor which, in contrast with the wild-type receptor, is desensitized by the application of a concentration of 1 microM of the partial agonist GR64349, indicating that the mutant is more sensitive to agonist activation than is the wild-type receptor. In addition, we show that, whereas the D79E mutant displayed activation properties similar to those of the wild-type receptor, the D79N and D79A mutants displayed a severely impaired ability to activate the calcium-dependent chloride current. This suggests that it is the negative charge at Asn-79, rather than the ability of this residue to hydrogen-bond, that is critical for the activity of the receptor. Interestingly, the placement of a negative charge at position 303 could compensate for the removal of the negative charge at position 79, since the double mutant D79N/N303D displayed activation properties similar to those of the wild-type receptor. This suggests that these two residues are functionally coupled, and may even be in close proximity in the three-dimensional structure of the human tachykinin NK2 receptor. A three-dimensional model of the receptor displaying this putative interaction is presented.
Full Text
The Full Text of this article is available as a PDF (163.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldwin J. M., Schertler G. F., Unger V. M. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J Mol Biol. 1997 Sep 12;272(1):144–164. doi: 10.1006/jmbi.1997.1240. [DOI] [PubMed] [Google Scholar]
- Baldwin J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993 Apr;12(4):1693–1703. doi: 10.1002/j.1460-2075.1993.tb05814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balmforth A. J., Lee A. J., Warburton P., Donnelly D., Ball S. G. The conformational change responsible for AT1 receptor activation is dependent upon two juxtaposed asparagine residues on transmembrane helices III and VII. J Biol Chem. 1997 Feb 14;272(7):4245–4251. doi: 10.1074/jbc.272.7.4245. [DOI] [PubMed] [Google Scholar]
- Barak L. S., Ménard L., Ferguson S. S., Colapietro A. M., Caron M. G. The conserved seven-transmembrane sequence NP(X)2,3Y of the G-protein-coupled receptor superfamily regulates multiple properties of the beta 2-adrenergic receptor. Biochemistry. 1995 Nov 28;34(47):15407–15414. doi: 10.1021/bi00047a003. [DOI] [PubMed] [Google Scholar]
- Bhogal N., Donnelly D., Findlay J. B. The ligand binding site of the neurokinin 2 receptor. Site-directed mutagenesis and identification of neurokinin A binding residues in the human neurokinin 2 receptor. J Biol Chem. 1994 Nov 4;269(44):27269–27274. [PubMed] [Google Scholar]
- Chung F. Z., Wang C. D., Potter P. C., Venter J. C., Fraser C. M. Site-directed mutagenesis and continuous expression of human beta-adrenergic receptors. Identification of a conserved aspartate residue involved in agonist binding and receptor activation. J Biol Chem. 1988 Mar 25;263(9):4052–4055. [PubMed] [Google Scholar]
- Dascal N., Landau E. M., Lass Y. Xenopus oocyte resting potential, muscarinic responses and the role of calcium and guanosine 3',5'-cyclic monophosphate. J Physiol. 1984 Jul;352:551–574. doi: 10.1113/jphysiol.1984.sp015310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donnelly D., Findlay J. B., Blundell T. L. The evolution and structure of aminergic G protein-coupled receptors. Receptors Channels. 1994;2(1):61–78. [PubMed] [Google Scholar]
- Donnelly D., Findlay J. B., Blundell T. L. The evolution and structure of aminergic G protein-coupled receptors. Receptors Channels. 1994;2(1):61–78. [PubMed] [Google Scholar]
- Donnelly D., Johnson M. S., Blundell T. L., Saunders J. An analysis of the periodicity of conserved residues in sequence alignments of G-protein coupled receptors. Implications for the three-dimensional structure. FEBS Lett. 1989 Jul 17;251(1-2):109–116. doi: 10.1016/0014-5793(89)81438-3. [DOI] [PubMed] [Google Scholar]
- Elling C. E., Nielsen S. M., Schwartz T. W. Conversion of antagonist-binding site to metal-ion site in the tachykinin NK-1 receptor. Nature. 1995 Mar 2;374(6517):74–77. doi: 10.1038/374074a0. [DOI] [PubMed] [Google Scholar]
- Elling C. E., Schwartz T. W. Connectivity and orientation of the seven helical bundle in the tachykinin NK-1 receptor probed by zinc site engineering. EMBO J. 1996 Nov 15;15(22):6213–6219. [PMC free article] [PubMed] [Google Scholar]
- Huang R. R., Vicario P. P., Strader C. D., Fong T. M. Identification of residues involved in ligand binding to the neurokinin-2 receptor. Biochemistry. 1995 Aug 8;34(31):10048–10055. doi: 10.1021/bi00031a029. [DOI] [PubMed] [Google Scholar]
- Hunyady L., Bor M., Baukal A. J., Balla T., Catt K. J. A conserved NPLFY sequence contributes to agonist binding and signal transduction but is not an internalization signal for the type 1 angiotensin II receptor. J Biol Chem. 1995 Jul 14;270(28):16602–16609. doi: 10.1074/jbc.270.28.16602. [DOI] [PubMed] [Google Scholar]
- Kusano K., Miledi R., Stinnakre J. Acetylcholine receptors in the oocyte membrane. Nature. 1977 Dec 22;270(5639):739–741. doi: 10.1038/270739a0. [DOI] [PubMed] [Google Scholar]
- Lübbert H., Hoffman B. J., Snutch T. P., van Dyke T., Levine A. J., Hartig P. R., Lester H. A., Davidson N. cDNA cloning of a serotonin 5-HT1C receptor by electrophysiological assays of mRNA-injected Xenopus oocytes. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4332–4336. doi: 10.1073/pnas.84.12.4332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maggi C. A., Schwartz T. W. The dual nature of the tachykinin NK1 receptor. Trends Pharmacol Sci. 1997 Oct;18(10):351–355. doi: 10.1016/s0165-6147(97)01107-3. [DOI] [PubMed] [Google Scholar]
- Maudsley S., Gent J. P., Findlay J. B., Donnelly D. The relationship between the agonist-induced activation and desensitization of the human tachykinin NK2 receptor expressed in Xenopus oocytes. Br J Pharmacol. 1998 Jun;124(4):675–684. doi: 10.1038/sj.bjp.0701889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mouillac B., Caron M., Bonin H., Dennis M., Bouvier M. Agonist-modulated palmitoylation of beta 2-adrenergic receptor in Sf9 cells. J Biol Chem. 1992 Oct 25;267(30):21733–21737. [PubMed] [Google Scholar]
- Nemeth K., Chollet A. A single mutation of the neurokinin-2 (NK2) receptor prevents agonist-induced desensitization. Divergent conformational requirements for NK2 receptor signaling and agonist-induced desensitization in Xenopus oocytes. J Biol Chem. 1995 Nov 17;270(46):27601–27605. doi: 10.1074/jbc.270.46.27601. [DOI] [PubMed] [Google Scholar]
- Oliveira L., Paiva A. C., Sander C., Vriend G. A common step for signal transduction in G protein-coupled receptors. Trends Pharmacol Sci. 1994 Jun;15(6):170–172. doi: 10.1016/0165-6147(94)90137-6. [DOI] [PubMed] [Google Scholar]
- Oron Y., Dascal N., Nadler E., Lupu M. Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes. Nature. 1985 Jan 10;313(5998):141–143. doi: 10.1038/313141a0. [DOI] [PubMed] [Google Scholar]
- Rao V. R., Cohen G. B., Oprian D. D. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature. 1994 Feb 17;367(6464):639–642. doi: 10.1038/367639a0. [DOI] [PubMed] [Google Scholar]
- Rosenkilde M. M., Cahir M., Gether U., Hjorth S. A., Schwartz T. W. Mutations along transmembrane segment II of the NK-1 receptor affect substance P competition with non-peptide antagonists but not substance P binding. J Biol Chem. 1994 Nov 11;269(45):28160–28164. [PubMed] [Google Scholar]
- Scheer A., Fanelli F., Costa T., De Benedetti P. G., Cotecchia S. Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J. 1996 Jul 15;15(14):3566–3578. [PMC free article] [PubMed] [Google Scholar]
- Sealfon S. C., Chi L., Ebersole B. J., Rodic V., Zhang D., Ballesteros J. A., Weinstein H. Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5-HT2A receptor. J Biol Chem. 1995 Jul 14;270(28):16683–16688. doi: 10.1074/jbc.270.28.16683. [DOI] [PubMed] [Google Scholar]
- Strader C. D., Candelore M. R., Hill W. S., Sigal I. S., Dixon R. A. Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor. J Biol Chem. 1989 Aug 15;264(23):13572–13578. [PubMed] [Google Scholar]
- Strader C. D., Sigal I. S., Candelore M. R., Rands E., Hill W. S., Dixon R. A. Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. J Biol Chem. 1988 Jul 25;263(21):10267–10271. [PubMed] [Google Scholar]
- Takahashi T., Neher E., Sakmann B. Rat brain serotonin receptors in Xenopus oocytes are coupled by intracellular calcium to endogenous channels. Proc Natl Acad Sci U S A. 1987 Jul;84(14):5063–5067. doi: 10.1073/pnas.84.14.5063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unger V. M., Hargrave P. A., Baldwin J. M., Schertler G. F. Arrangement of rhodopsin transmembrane alpha-helices. Nature. 1997 Sep 11;389(6647):203–206. doi: 10.1038/38316. [DOI] [PubMed] [Google Scholar]
- Zhou W., Flanagan C., Ballesteros J. A., Konvicka K., Davidson J. S., Weinstein H., Millar R. P., Sealfon S. C. A reciprocal mutation supports helix 2 and helix 7 proximity in the gonadotropin-releasing hormone receptor. Mol Pharmacol. 1994 Feb;45(2):165–170. [PubMed] [Google Scholar]
