Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 1;339(Pt 1):63–69.

Mapping the active site of the Haemophilus influenzae methionyl-tRNA formyltransferase: residues important for catalysis and tRNA binding.

D T Newton 1, D Mangroo 1
PMCID: PMC1220128  PMID: 10085228

Abstract

Formylation of the initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF) is an essential step in initiation of protein synthesis in eubacteria. Here, site-directed mutagenesis was used to identify active site residues of the Haemophilus influenzae MTF. Of the nine residues investigated, only Arg-41, Asn-107, His-109 and Asp-145 were important for the function of the H. influenzae MTF. Replacement of these residues with Ala resulted in a significant reduction in the efficiency of catalysis. Intrinsic fluorescence analysis indicated that this was not due to a defect in N10-formyltetrahydrofolate (fTHF) binding. The Asp-145 and Arg-41 mutations reduced the affinity of the enzyme for the initiator tRNA, whereas the Asn-107 and His-109 mutations affected catalysis but not tRNA binding. Replacement of Arg-41, His-109 and Asp-145 with functionally similar residues also affected the activity of the enzyme. The data suggest that Asn-107, His-109 and Asp-145 are catalytic residues, whereas Arg-41 is involved in tRNA recognition. In the Escherichia coli glycinamide ribonucleotide formyltransferase, which also uses fTHF as the formyl donor, Asn-106, His-108 and Asp-144 participate in the catalytic step. Together, these observations imply that this group of enzymes uses the same basic mechanism in formylating their substrates.

Full Text

The Full Text of this article is available as a PDF (192.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almassy R. J., Janson C. A., Kan C. C., Hostomska Z. Structures of apo and complexed Escherichia coli glycinamide ribonucleotide transformylase. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6114–6118. doi: 10.1073/pnas.89.13.6114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson S. G., Zomorodipour A., Winkler H. H., Kurland C. G. Unusual organization of the rRNA genes in Rickettsia prowazekii. J Bacteriol. 1995 Jul;177(14):4171–4175. doi: 10.1128/jb.177.14.4171-4175.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beattie B. K., Prentice G. A., Merrill A. R. Investigation into the catalytic role for the tryptophan residues within domain III of Pseudomonas aeruginosa exotoxin A. Biochemistry. 1996 Dec 3;35(48):15134–15142. doi: 10.1021/bi961985t. [DOI] [PubMed] [Google Scholar]
  4. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  5. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  6. Gite S., RajBhandary U. L. Lysine 207 as the site of cross-linking between the 3'-end of Escherichia coli initiator tRNA and methionyl-tRNA formyltransferase. J Biol Chem. 1997 Feb 21;272(8):5305–5312. doi: 10.1074/jbc.272.8.5305. [DOI] [PubMed] [Google Scholar]
  7. Guillon J. M., Heiss S., Soutourina J., Mechulam Y., Laalami S., Grunberg-Manago M., Blanquet S. Interplay of methionine tRNAs with translation elongation factor Tu and translation initiation factor 2 in Escherichia coli. J Biol Chem. 1996 Sep 13;271(37):22321–22325. doi: 10.1074/jbc.271.37.22321. [DOI] [PubMed] [Google Scholar]
  8. Guillon J. M., Mechulam Y., Schmitter J. M., Blanquet S., Fayat G. Disruption of the gene for Met-tRNA(fMet) formyltransferase severely impairs growth of Escherichia coli. J Bacteriol. 1992 Jul;174(13):4294–4301. doi: 10.1128/jb.174.13.4294-4301.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hartz D., McPheeters D. S., Gold L. Selection of the initiator tRNA by Escherichia coli initiation factors. Genes Dev. 1989 Dec;3(12A):1899–1912. doi: 10.1101/gad.3.12a.1899. [DOI] [PubMed] [Google Scholar]
  10. Kahn D., Fromant M., Fayat G., Dessen P., Blanquet S. Methionyl-transfer-RNA transformylase from Escherichia coli. Purification and characterisation. Eur J Biochem. 1980 Apr;105(3):489–497. doi: 10.1111/j.1432-1033.1980.tb04524.x. [DOI] [PubMed] [Google Scholar]
  11. Lee C. P., Seong B. L., RajBhandary U. L. Structural and sequence elements important for recognition of Escherichia coli formylmethionine tRNA by methionyl-tRNA transformylase are clustered in the acceptor stem. J Biol Chem. 1991 Sep 25;266(27):18012–18017. [PubMed] [Google Scholar]
  12. Liu R., Sharom F. J. Fluorescence studies on the nucleotide binding domains of the P-glycoprotein multidrug transporter. Biochemistry. 1997 Mar 11;36(10):2836–2843. doi: 10.1021/bi9627119. [DOI] [PubMed] [Google Scholar]
  13. MARCKER K., SANGER F. N-FORMYL-METHIONYL-S-RNA. J Mol Biol. 1964 Jun;8:835–840. doi: 10.1016/s0022-2836(64)80164-9. [DOI] [PubMed] [Google Scholar]
  14. Mandal N., RajBhandary U. L. Escherichia coli B lacks one of the two initiator tRNA species present in E. coli K-12. J Bacteriol. 1992 Dec;174(23):7827–7830. doi: 10.1128/jb.174.23.7827-7830.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mangroo D., Limbach P. A., McCloskey J. A., RajBhandary U. L. An anticodon sequence mutant of Escherichia coli initiator tRNA: possible importance of a newly acquired base modification next to the anticodon on its activity in initiation. J Bacteriol. 1995 May;177(10):2858–2862. doi: 10.1128/jb.177.10.2858-2862.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mangroo D., RajBhandary U. L. Mutants of Escherichia coli initiator tRNA defective in initiation. Effects of overproduction of methionyl-tRNA transformylase and the initiation factors IF2 and IF3. J Biol Chem. 1995 May 19;270(20):12203–12209. doi: 10.1074/jbc.270.20.12203. [DOI] [PubMed] [Google Scholar]
  17. Meinnel T., Blanquet S. Characterization of the Thermus thermophilus locus encoding peptide deformylase and methionyl-tRNA(fMet) formyltransferase. J Bacteriol. 1994 Dec;176(23):7387–7390. doi: 10.1128/jb.176.23.7387-7390.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Puglisi E. V., Puglisi J. D., Williamson J. R., RajBhandary U. L. NMR analysis of tRNA acceptor stem microhelices: discriminator base change affects tRNA conformation at the 3' end. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11467–11471. doi: 10.1073/pnas.91.24.11467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. RajBhandary U. L. Initiator transfer RNAs. J Bacteriol. 1994 Feb;176(3):547–552. doi: 10.1128/jb.176.3.547-552.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ramesh V., Gite S., Li Y., RajBhandary U. L. Suppressor mutations in Escherichia coli methionyl-tRNA formyltransferase: role of a 16-amino acid insertion module in initiator tRNA recognition. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13524–13529. doi: 10.1073/pnas.94.25.13524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schmitt E., Blanquet S., Mechulam Y. Structure of crystalline Escherichia coli methionyl-tRNA(f)Met formyltransferase: comparison with glycinamide ribonucleotide formyltransferase. EMBO J. 1996 Sep 2;15(17):4749–4758. [PMC free article] [PubMed] [Google Scholar]
  22. Shim J. H., Benkovic S. J. Evaluation of the kinetic mechanism of Escherichia coli glycinamide ribonucleotide transformylase. Biochemistry. 1998 Jun 16;37(24):8776–8782. doi: 10.1021/bi980244k. [DOI] [PubMed] [Google Scholar]
  23. Sundari R. M., Stringer E. A., Schulman L. H., Maitra U. Interaction of bacterial initiation factor 2 with initiator tRNA. J Biol Chem. 1976 Jun 10;251(11):3338–3345. [PubMed] [Google Scholar]
  24. Varshney U., Lee C. P., Seong B. L., RajBhandary U. L. Mutants of initiator tRNA that function both as initiators and elongators. J Biol Chem. 1991 Sep 25;266(27):18018–18024. [PubMed] [Google Scholar]
  25. Wallis N. G., Dardel F., Blanquet S. Heteronuclear NMR studies of the interactions of 15N-labeled methionine-specific transfer RNAs with methionyl-tRNA transformylase. Biochemistry. 1995 Jun 13;34(23):7668–7677. doi: 10.1021/bi00023a013. [DOI] [PubMed] [Google Scholar]
  26. Warren M. S., Marolewski A. E., Benkovic S. J. A rapid screen of active site mutants in glycinamide ribonucleotide transformylase. Biochemistry. 1996 Jul 9;35(27):8855–8862. doi: 10.1021/bi9528715. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES