Abstract
Phospholipase D (PLD) activity has been shown to be GTP-dependent both in vivo and in vitro. One protein that confers GTP sensitivity to PLD activity in vitro is the low-molecular-mass G-protein ADP-ribosylation factor (Arf). However, members of the Rho family and protein kinase C (PKC) have also been reported to activate PLD in various cell systems. We have characterized the stimulation of PLD in HL60 cell membranes by these proteins. The results demonstrate that a considerable proportion of HL60 PLD activity is located in a detergent-insoluble fraction of the cell membrane that is unlikely to be a caveolae-like domain, but is probably cytoskeletal. This PLD activity required the presence of Arf1, a Rho-family member and PKC for efficient catalysis of the lipid substrate, suggesting that the activity represents PLD1. We show that recombinant human PLD1b is regulated in a similar manner to HL60-membrane PLD, and that PKCalpha and PKCdelta are equally effective PLD activators. Therefore maximum PLD activity requires Arf, a Rho-family member and PKC, emphasizing the high degree of regulation of this enzyme.
Full Text
The Full Text of this article is available as a PDF (128.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brown F. D., Thompson N., Saqib K. M., Clark J. M., Powner D., Thompson N. T., Solari R., Wakelam M. J. Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation. Curr Biol. 1998 Jul 2;8(14):835–838. doi: 10.1016/s0960-9822(98)70326-4. [DOI] [PubMed] [Google Scholar]
- Brown H. A., Gutowski S., Moomaw C. R., Slaughter C., Sternweis P. C. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell. 1993 Dec 17;75(6):1137–1144. doi: 10.1016/0092-8674(93)90323-i. [DOI] [PubMed] [Google Scholar]
- Chardin P., Paris S., Antonny B., Robineau S., Béraud-Dufour S., Jackson C. L., Chabre M. A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature. 1996 Dec 5;384(6608):481–484. doi: 10.1038/384481a0. [DOI] [PubMed] [Google Scholar]
- Cockcroft S., Thomas G. M., Fensome A., Geny B., Cunningham E., Gout I., Hiles I., Totty N. F., Truong O., Hsuan J. J. Phospholipase D: a downstream effector of ARF in granulocytes. Science. 1994 Jan 28;263(5146):523–526. doi: 10.1126/science.8290961. [DOI] [PubMed] [Google Scholar]
- Colley W. C., Altshuller Y. M., Sue-Ling C. K., Copeland N. G., Gilbert D. J., Jenkins N. A., Branch K. D., Tsirka S. E., Bollag R. J., Bollag W. B. Cloning and expression analysis of murine phospholipase D1. Biochem J. 1997 Sep 15;326(Pt 3):745–753. doi: 10.1042/bj3260745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook S. J., Briscoe C. P., Wakelam M. J. The regulation of phospholipase D activity and its role in sn-1,2-diradylglycerol formation in bombesin- and phorbol 12-myristate 13-acetate-stimulated Swiss 3T3 cells. Biochem J. 1991 Dec 1;280(Pt 2):431–438. doi: 10.1042/bj2800431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook S. J., Wakelam M. J. Analysis of the water-soluble products of phosphatidylcholine breakdown by ion-exchange chromatography. Bombesin and TPA (12-O-tetradecanoylphorbol 13-acetate) stimulate choline generation in Swiss 3T3 cells by a common mechanism. Biochem J. 1989 Oct 15;263(2):581–587. doi: 10.1042/bj2630581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cross M. J., Roberts S., Ridley A. J., Hodgkin M. N., Stewart A., Claesson-Welsh L., Wakelam M. J. Stimulation of actin stress fibre formation mediated by activation of phospholipase D. Curr Biol. 1996 May 1;6(5):588–597. doi: 10.1016/s0960-9822(02)00545-6. [DOI] [PubMed] [Google Scholar]
- Donaldson J. G., Klausner R. D. ARF: a key regulatory switch in membrane traffic and organelle structure. Curr Opin Cell Biol. 1994 Aug;6(4):527–532. doi: 10.1016/0955-0674(94)90072-8. [DOI] [PubMed] [Google Scholar]
- Hammond S. M., Altshuller Y. M., Sung T. C., Rudge S. A., Rose K., Engebrecht J., Morris A. J., Frohman M. A. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem. 1995 Dec 15;270(50):29640–29643. doi: 10.1074/jbc.270.50.29640. [DOI] [PubMed] [Google Scholar]
- Hammond S. M., Jenco J. M., Nakashima S., Cadwallader K., Gu Q., Cook S., Nozawa Y., Prestwich G. D., Frohman M. A., Morris A. J. Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-alpha. J Biol Chem. 1997 Feb 7;272(6):3860–3868. doi: 10.1074/jbc.272.6.3860. [DOI] [PubMed] [Google Scholar]
- Hodgkin M. N., Pettitt T. R., Martin A., Michell R. H., Pemberton A. J., Wakelam M. J. Diacylglycerols and phosphatidates: which molecular species are intracellular messengers? Trends Biochem Sci. 1998 Jun;23(6):200–204. doi: 10.1016/s0968-0004(98)01200-6. [DOI] [PubMed] [Google Scholar]
- Houle M. G., Kahn R. A., Naccache P. H., Bourgoin S. ADP-ribosylation factor translocation correlates with potentiation of GTP gamma S-stimulated phospholipase D activity in membrane fractions of HL-60 cells. J Biol Chem. 1995 Sep 29;270(39):22795–22800. doi: 10.1074/jbc.270.39.22795. [DOI] [PubMed] [Google Scholar]
- Hurley J. H., Grobler J. A. Protein kinase C and phospholipase C: bilayer interactions and regulation. Curr Opin Struct Biol. 1997 Aug;7(4):557–565. doi: 10.1016/s0959-440x(97)80122-4. [DOI] [PubMed] [Google Scholar]
- Kahn R. A., Gilman A. G. The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J Biol Chem. 1986 Jun 15;261(17):7906–7911. [PubMed] [Google Scholar]
- Kanaho Y., Nishida A., Nozawa Y. Calcium rather than protein kinase C is the major factor to activate phospholipase D in FMLP-stimulated rabbit peritoneal neutrophils. Possible involvement of calmodulin/myosin L chain kinase pathway. J Immunol. 1992 Jul 15;149(2):622–628. [PubMed] [Google Scholar]
- Ktistakis N. T., Brown H. A., Sternweis P. C., Roth M. G. Phospholipase D is present on Golgi-enriched membranes and its activation by ADP ribosylation factor is sensitive to brefeldin A. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4952–4956. doi: 10.1073/pnas.92.11.4952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuribara H., Tago K., Yokozeki T., Sasaki T., Takai Y., Morii N., Narumiya S., Katada T., Kanaho Y. Synergistic activation of rat brain phospholipase D by ADP-ribosylation factor and rhoA p21, and its inhibition by Clostridium botulinum C3 exoenzyme. J Biol Chem. 1995 Oct 27;270(43):25667–25671. doi: 10.1074/jbc.270.43.25667. [DOI] [PubMed] [Google Scholar]
- Kwak J. Y., Lopez I., Uhlinger D. J., Ryu S. H., Lambeth J. D. RhoA and a cytosolic 50-kDa factor reconstitute GTP gamma S-dependent phospholipase D activity in human neutrophil subcellular fractions. J Biol Chem. 1995 Nov 10;270(45):27093–27098. doi: 10.1074/jbc.270.45.27093. [DOI] [PubMed] [Google Scholar]
- Kübler E., Dohlman H. G., Lisanti M. P. Identification of Triton X-100 insoluble membrane domains in the yeast Saccharomyces cerevisiae. Lipid requirements for targeting of heterotrimeric G-protein subunits. J Biol Chem. 1996 Dec 20;271(51):32975–32980. doi: 10.1074/jbc.271.51.32975. [DOI] [PubMed] [Google Scholar]
- Liscovitch M., Chalifa V., Pertile P., Chen C. S., Cantley L. C. Novel function of phosphatidylinositol 4,5-bisphosphate as a cofactor for brain membrane phospholipase D. J Biol Chem. 1994 Aug 26;269(34):21403–21406. [PubMed] [Google Scholar]
- Massenburg D., Han J. S., Liyanage M., Patton W. A., Rhee S. G., Moss J., Vaughan M. Activation of rat brain phospholipase D by ADP-ribosylation factors 1,5, and 6: separation of ADP-ribosylation factor-dependent and oleate-dependent enzymes. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11718–11722. doi: 10.1073/pnas.91.24.11718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer zu Heringdorf D., Liedel K., Kaldenberg-Stasch S., Michel M. C., Jakobs K. H., Wieland T. Translocation of microfilament-associated inhibitory guanine-nucleotide-binding proteins to the plasma membrane in myeloid differentiated human leukemia (HL-60) cells. Eur J Biochem. 1996 Feb 1;235(3):670–676. doi: 10.1111/j.1432-1033.1996.00670.x. [DOI] [PubMed] [Google Scholar]
- Min D. S., Park S. K., Exton J. H. Characterization of a rat brain phospholipase D isozyme. J Biol Chem. 1998 Mar 20;273(12):7044–7051. doi: 10.1074/jbc.273.12.7044. [DOI] [PubMed] [Google Scholar]
- Nagata K., Okano Y., Nozawa Y. Differential expression of low Mr GTP-binding proteins in human megakaryoblastic leukemia cell line, MEG-01, and their possible involvement in the differentiation process. Thromb Haemost. 1997 Feb;77(2):368–375. [PubMed] [Google Scholar]
- Nobes C. D., Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995 Apr 7;81(1):53–62. doi: 10.1016/0092-8674(95)90370-4. [DOI] [PubMed] [Google Scholar]
- Ohguchi K., Banno Y., Nakashima S., Nozawa Y. Regulation of membrane-bound phospholipase D by protein kinase C in HL60 cells. Synergistic action of small GTP-binding protein RhoA. J Biol Chem. 1996 Feb 23;271(8):4366–4372. doi: 10.1074/jbc.271.8.4366. [DOI] [PubMed] [Google Scholar]
- Ohguchi K., Nakashima S., Tan Z., Banno Y., Dohi S., Nozawa Y. Increased activity of small GTP-binding protein-dependent phospholipase D during differentiation in human promyelocytic leukemic HL60 cells. J Biol Chem. 1997 Jan 17;272(3):1990–1996. doi: 10.1074/jbc.272.3.1990. [DOI] [PubMed] [Google Scholar]
- Park S. K., Min D. S., Exton J. H. Definition of the protein kinase C interaction site of phospholipase D. Biochem Biophys Res Commun. 1998 Mar 17;244(2):364–367. doi: 10.1006/bbrc.1998.8275. [DOI] [PubMed] [Google Scholar]
- Pertile P., Liscovitch M., Chalifa V., Cantley L. C. Phosphatidylinositol 4,5-bisphosphate synthesis is required for activation of phospholipase D in U937 cells. J Biol Chem. 1995 Mar 10;270(10):5130–5135. doi: 10.1074/jbc.270.10.5130. [DOI] [PubMed] [Google Scholar]
- Pike L. J., Casey L. Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched membrane domains. J Biol Chem. 1996 Oct 25;271(43):26453–26456. doi: 10.1074/jbc.271.43.26453. [DOI] [PubMed] [Google Scholar]
- Rodgers W., Crise B., Rose J. K. Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol. 1994 Aug;14(8):5384–5391. doi: 10.1128/mcb.14.8.5384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddiqi A. R., Smith J. L., Ross A. H., Qiu R. G., Symons M., Exton J. H. Regulation of phospholipase D in HL60 cells. Evidence for a cytosolic phospholipase D. J Biol Chem. 1995 Apr 14;270(15):8466–8473. doi: 10.1074/jbc.270.15.8466. [DOI] [PubMed] [Google Scholar]
- Singer W. D., Brown H. A., Jiang X., Sternweis P. C. Regulation of phospholipase D by protein kinase C is synergistic with ADP-ribosylation factor and independent of protein kinase activity. J Biol Chem. 1996 Feb 23;271(8):4504–4510. doi: 10.1074/jbc.271.8.4504. [DOI] [PubMed] [Google Scholar]
- Tohyama Y., Yanagi S., Sada K., Yamamura H. Translocation of p72syk to the cytoskeleton in thrombin-stimulated platelets. J Biol Chem. 1994 Dec 30;269(52):32796–32799. [PubMed] [Google Scholar]
- Toyoda H., Nakai K., Omay S. B., Shima H., Nagao M., Shiku H., Nishikawa M. Differential association of protein Ser/Thr phosphatase types 1 and 2A with the cytoskeleton upon platelet activation. Thromb Haemost. 1996 Dec;76(6):1053–1062. [PubMed] [Google Scholar]
- Waugh M. G., Lawson D., Tan S. K., Hsuan J. J. Phosphatidylinositol 4-phosphate synthesis in immunoisolated caveolae-like vesicles and low buoyant density non-caveolar membranes. J Biol Chem. 1998 Jul 3;273(27):17115–17121. doi: 10.1074/jbc.273.27.17115. [DOI] [PubMed] [Google Scholar]
- Wieland T., Meyer zu Heringdorf D., Schulze R. A., Kaldenberg-Stasch S., Jakobs K. H. Receptor-induced translocation of activated guanine-nucleotide-binding protein alpha i subunits to the cytoskeleton in myeloid differentiated human leukemia (HL-60) cells. Eur J Biochem. 1996 Aug 1;239(3):752–758. doi: 10.1111/j.1432-1033.1996.0752u.x. [DOI] [PubMed] [Google Scholar]
- Zhang J., Fry M. J., Waterfield M. D., Jaken S., Liao L., Fox J. E., Rittenhouse S. E. Activated phosphoinositide 3-kinase associates with membrane skeleton in thrombin-exposed platelets. J Biol Chem. 1992 Mar 5;267(7):4686–4692. [PubMed] [Google Scholar]
- Zheng Y., Glaven J. A., Wu W. J., Cerione R. A. Phosphatidylinositol 4,5-bisphosphate provides an alternative to guanine nucleotide exchange factors by stimulating the dissociation of GDP from Cdc42Hs. J Biol Chem. 1996 Sep 27;271(39):23815–23819. doi: 10.1074/jbc.271.39.23815. [DOI] [PubMed] [Google Scholar]
