Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 1;339(Pt 1):103–109.

Nematode pyruvate dehydrogenase kinases: role of the C-terminus in binding to the dihydrolipoyl transacetylase core of the pyruvate dehydrogenase complex.

W Chen 1, P R Komuniecki 1, R Komuniecki 1
PMCID: PMC1220133  PMID: 10085233

Abstract

Pyruvate dehydrogenase kinases (PDKs) from the anaerobic parasitic nematode Ascaris suum and the free-living nematode Caenorhabditis elegans were functionally expressed with hexahistidine tags at their N-termini and purified to apparent homogeneity. Both recombinant PDKs (rPDKs) were dimers, were not autophosphorylated and exhibited similar specific activities with the A. suum pyruvate dehydrogenase (E1) as substrate. In addition, the activities of both PDKs were activated by incubation with PDK-depleted A. suum muscle pyruvate dehydrogenase complex (PDC) and were stimulated by NADH and acetyl-CoA. However, the recombinant A. suum PDK (rAPDK) required higher NADH/NAD+ ratios for half-maximal stimulation than the recombinant C. elegans PDK (rCPDK) or values reported for mammalian PDKs, as might be predicted by the more reduced microaerobic mitochondrial environment of the APDK. Limited tryptic digestion of both rPDKs yielded stable fragments truncated at the C-termini (trPDKs). The trPDKs retained their dimeric structure and exhibited substantial PDK activity with the A. suum E1 as substrate, but PDK activity was not activated by incubation with PDK-depleted A. suum PDC or stimulated by elevated NADH/NAD+ or acetyl-CoA/CoA ratios. Direct-binding assays demonstrated that increasing amounts of rCPDK bound to the A. suum PDK-depleted PDC. No additional rCPDK binding was observed at ratios greater than 20 mol of rCPDK/mol of PDC. In contrast, the truncated rCPDK (trCPDK) did not exhibit significant binding to the PDC. Similarly, a truncated form of rCPDK, rCPDK1-334, generated by mutagenesis, exhibited properties similar to those observed for trCPDK. These results suggest that the C-terminus of the PDK is not required for subunit association of the homodimer or catalysis, but instead seems to be involved in the binding of the PDKs to the dihydrolipoyl transacetylase core of the complex.

Full Text

The Full Text of this article is available as a PDF (173.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowker-Kinley M. M., Davis W. I., Wu P., Harris R. A., Popov K. M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J. 1998 Jan 1;329(Pt 1):191–196. doi: 10.1042/bj3290191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen W., Huang X., Komuniecki P. R., Komuniecki R. Molecular cloning, functional expression, and characterization of pyruvate dehydrogenase kinase from anaerobic muscle of the parasitic nematode Ascaris suum. Arch Biochem Biophys. 1998 May 1;353(1):181–189. doi: 10.1006/abbi.1998.0627. [DOI] [PubMed] [Google Scholar]
  3. Diaz F., Komuniecki R. Pyruvate dehydrogenase complex from the primitive insect trypanosomatid, Crithidia fasciculata: dihydrolipoyl dehydrogenase-binding protein has multiple lipoyl domains. Mol Biochem Parasitol. 1995 Dec;75(1):87–97. doi: 10.1016/0166-6851(95)02498-0. [DOI] [PubMed] [Google Scholar]
  4. Gudi R., Bowker-Kinley M. M., Kedishvili N. Y., Zhao Y., Popov K. M. Diversity of the pyruvate dehydrogenase kinase gene family in humans. J Biol Chem. 1995 Dec 1;270(48):28989–28994. doi: 10.1074/jbc.270.48.28989. [DOI] [PubMed] [Google Scholar]
  5. Harris R. A., Bowker-Kinley M. M., Wu P., Jeng J., Popov K. M. Dihydrolipoamide dehydrogenase-binding protein of the human pyruvate dehydrogenase complex. DNA-derived amino acid sequence, expression, and reconstitution of the pyruvate dehydrogenase complex. J Biol Chem. 1997 Aug 8;272(32):19746–19751. doi: 10.1074/jbc.272.32.19746. [DOI] [PubMed] [Google Scholar]
  6. Huang Y. J., Walker D., Chen W., Klingbeil M., Komuniecki R. Expression of pyruvate dehydrogenase isoforms during the aerobic/anaerobic transition in the development of the parasitic nematode Ascaris suum: altered stoichiometry of phosphorylation/inactivation. Arch Biochem Biophys. 1998 Apr 15;352(2):263–270. doi: 10.1006/abbi.1998.0596. [DOI] [PubMed] [Google Scholar]
  7. Hunter T. Protein kinase classification. Methods Enzymol. 1991;200:3–37. doi: 10.1016/0076-6879(91)00125-g. [DOI] [PubMed] [Google Scholar]
  8. Kent U. M. Purification of antibodies using affinity chromatography. Methods Mol Biol. 1994;34:29–35. doi: 10.1385/0-89603285-x:29. [DOI] [PubMed] [Google Scholar]
  9. Klingbeil M. M., Walker D. J., Arnette R., Sidawy E., Hayton K., Komuniecki P. R., Komuniecki R. Identification of a novel dihydrolipoyl dehydrogenase-binding protein in the pyruvate dehydrogenase complex of the anaerobic parasitic nematode, Ascaris suum. J Biol Chem. 1996 Mar 8;271(10):5451–5457. doi: 10.1074/jbc.271.10.5451. [DOI] [PubMed] [Google Scholar]
  10. Komuniecki R., Fekete S., Thissen-Parra J. Purification and characterization of the 2-methyl branched-chain Acyl-CoA dehydrogenase, an enzyme involved in NADH-dependent enoyl-CoA reduction in anaerobic mitochondria of the nematode, Ascaris suum. J Biol Chem. 1985 Apr 25;260(8):4770–4777. [PubMed] [Google Scholar]
  11. Korotchkina L. G., Patel M. S. Mutagenesis studies of the phosphorylation sites of recombinant human pyruvate dehydrogenase. Site-specific regulation. J Biol Chem. 1995 Jun 16;270(24):14297–14304. doi: 10.1074/jbc.270.24.14297. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Le Grice S. F., Grüninger-Leitch F. Rapid purification of homodimer and heterodimer HIV-1 reverse transcriptase by metal chelate affinity chromatography. Eur J Biochem. 1990 Jan 26;187(2):307–314. doi: 10.1111/j.1432-1033.1990.tb15306.x. [DOI] [PubMed] [Google Scholar]
  14. Liu S., Baker J. C., Roche T. E. Binding of the pyruvate dehydrogenase kinase to recombinant constructs containing the inner lipoyl domain of the dihydrolipoyl acetyltransferase component. J Biol Chem. 1995 Jan 13;270(2):793–800. doi: 10.1074/jbc.270.2.793. [DOI] [PubMed] [Google Scholar]
  15. Ma Y. C., Funk M., Dunham W. R., Komuniecki R. Purification and characterization of electron-transfer flavoprotein: rhodoquinone oxidoreductase from anaerobic mitochondria of the adult parasitic nematode, Ascaris suum. J Biol Chem. 1993 Sep 25;268(27):20360–20365. [PubMed] [Google Scholar]
  16. McCartney R. G., Sanderson S. J., Lindsay J. G. Refolding and reconstitution studies on the transacetylase-protein X (E2/X) subcomplex of the mammalian pyruvate dehydrogenase complex: evidence for specific binding of the dihydrolipoamide dehydrogenase component to sites on reassembled E2. Biochemistry. 1997 Jun 3;36(22):6819–6826. doi: 10.1021/bi9630016. [DOI] [PubMed] [Google Scholar]
  17. Ono K., Radke G. A., Roche T. E., Rahmatullah M. Partial activation of the pyruvate dehydrogenase kinase by the lipoyl domain region of E2 and interchange of the kinase between lipoyl domain regions. J Biol Chem. 1993 Dec 15;268(35):26135–26143. [PubMed] [Google Scholar]
  18. Patel M. S., Roche T. E. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990 Nov;4(14):3224–3233. doi: 10.1096/fasebj.4.14.2227213. [DOI] [PubMed] [Google Scholar]
  19. Perham R. N. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry. 1991 Sep 3;30(35):8501–8512. doi: 10.1021/bi00099a001. [DOI] [PubMed] [Google Scholar]
  20. Popov K. M., Kedishvili N. Y., Zhao Y., Gudi R., Harris R. A. Molecular cloning of the p45 subunit of pyruvate dehydrogenase kinase. J Biol Chem. 1994 Nov 25;269(47):29720–29724. [PubMed] [Google Scholar]
  21. Popov K. M., Kedishvili N. Y., Zhao Y., Shimomura Y., Crabb D. W., Harris R. A. Primary structure of pyruvate dehydrogenase kinase establishes a new family of eukaryotic protein kinases. J Biol Chem. 1993 Dec 15;268(35):26602–26606. [PubMed] [Google Scholar]
  22. Radke G. A., Ono K., Ravindran S., Roche T. E. Critical role of a lipoyl cofactor of the dihydrolipoyl acetyltransferase in the binding and enhanced function of the pyruvate dehydrogenase kinase. Biochem Biophys Res Commun. 1993 Feb 15;190(3):982–991. doi: 10.1006/bbrc.1993.1146. [DOI] [PubMed] [Google Scholar]
  23. Rahmatullah M., Roche T. E. Modification of bovine kidney pyruvate dehydrogenase kinase activity by CoA esters and their mechanism of action. J Biol Chem. 1985 Aug 25;260(18):10146–10152. [PubMed] [Google Scholar]
  24. Rahmatullah M., Roche T. E. The catalytic requirements for reduction and acetylation of protein X and the related regulation of various forms of resolved pyruvate dehydrogenase kinase. J Biol Chem. 1987 Jul 25;262(21):10265–10271. [PubMed] [Google Scholar]
  25. Randle P. J., Priestman D. A., Mistry S. C., Halsall A. Glucose fatty acid interactions and the regulation of glucose disposal. J Cell Biochem. 1994;55 (Suppl):1–11. doi: 10.1002/jcb.240550002. [DOI] [PubMed] [Google Scholar]
  26. Ravindran S., Radke G. A., Guest J. R., Roche T. E. Lipoyl domain-based mechanism for the integrated feedback control of the pyruvate dehydrogenase complex by enhancement of pyruvate dehydrogenase kinase activity. J Biol Chem. 1996 Jan 12;271(2):653–662. doi: 10.1074/jbc.271.2.653. [DOI] [PubMed] [Google Scholar]
  27. Roche T. E., Cate R. L. Purification of porcine liver pyruvate dehydrogenase complex and characterization of its catalytic and regulatory properties. Arch Biochem Biophys. 1977 Oct;183(2):664–677. doi: 10.1016/0003-9861(77)90400-3. [DOI] [PubMed] [Google Scholar]
  28. Rowles J., Scherer S. W., Xi T., Majer M., Nickle D. C., Rommens J. M., Popov K. M., Harris R. A., Riebow N. L., Xia J. Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human. J Biol Chem. 1996 Sep 13;271(37):22376–22382. doi: 10.1074/jbc.271.37.22376. [DOI] [PubMed] [Google Scholar]
  29. Sanderson S. J., Khan S. S., McCartney R. G., Miller C., Lindsay J. G. Reconstitution of mammalian pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes: analysis of protein X involvement and interaction of homologous and heterologous dihydrolipoamide dehydrogenases. Biochem J. 1996 Oct 1;319(Pt 1):109–116. doi: 10.1042/bj3190109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saz H. J. Anaerobic phosphorylation in Ascaris mitochondria and the effects of anthelmintics. Comp Biochem Physiol B. 1971 Jul 15;39(3):627–637. doi: 10.1016/0305-0491(71)90207-0. [DOI] [PubMed] [Google Scholar]
  32. Stepp L. R., Pettit F. H., Yeaman S. J., Reed L. J. Purification and properties of pyruvate dehydrogenase kinase from bovine kidney. J Biol Chem. 1983 Aug 10;258(15):9454–9458. [PubMed] [Google Scholar]
  33. Stock J. B., Stock A. M., Mottonen J. M. Signal transduction in bacteria. Nature. 1990 Mar 29;344(6265):395–400. doi: 10.1038/344395a0. [DOI] [PubMed] [Google Scholar]
  34. Sugden M. C., Holness M. J. Interactive regulation of the pyruvate dehydrogenase complex and the carnitine palmitoyltransferase system. FASEB J. 1994 Jan;8(1):54–61. doi: 10.1096/fasebj.8.1.8299890. [DOI] [PubMed] [Google Scholar]
  35. Sulston J., Du Z., Thomas K., Wilson R., Hillier L., Staden R., Halloran N., Green P., Thierry-Mieg J., Qiu L. The C. elegans genome sequencing project: a beginning. Nature. 1992 Mar 5;356(6364):37–41. doi: 10.1038/356037a0. [DOI] [PubMed] [Google Scholar]
  36. Thissen J., Desai S., McCartney P., Komuniecki R. Improved purification of the pyruvate dehydrogenase complex from Ascaris suum body wall muscle and characterization of PDHa kinase activity. Mol Biochem Parasitol. 1986 Nov;21(2):129–138. doi: 10.1016/0166-6851(86)90016-2. [DOI] [PubMed] [Google Scholar]
  37. Thissen J., Komuniecki R. Phosphorylation and inactivation of the pyruvate dehydrogenase from the anaerobic parasitic nematode, Ascaris suum. Stoichiometry and amino acid sequence around the phosphorylation sites. J Biol Chem. 1988 Dec 15;263(35):19092–19097. [PubMed] [Google Scholar]
  38. Wirtz E., Sylvester D., Hill G. C. Characterization of a novel developmentally regulated gene from Trypanosoma brucei encoding a potential phosphoprotein. Mol Biochem Parasitol. 1991 Jul;47(1):119–128. doi: 10.1016/0166-6851(91)90154-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES