Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 1;339(Pt 1):127–134.

ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits.

P E Jensen 1, L C Gibson 1, C N Hunter 1
PMCID: PMC1220136  PMID: 10085236

Abstract

Insertion of Mg2+ into protoporphyrin IX catalysed by the three-subunit enzyme magnesium-protoporphyrin IX chelatase (Mg chelatase) is thought to be a two-step reaction, consisting of activation followed by Mg2+ chelation. The activation step requires ATP and two of the subunits, ChlI and ChlD (I and D respectively), and it has been speculated that this step results in the formation of an I-D-ATP complex. The subsequent step, in which Mg2+ is inserted into protoporphyrin, also requires ATP and the third subunit, H, in addition to ATP-activated I-D complex. In the present study, we examine the interaction of the I and D subunits of the Mg chelatase from the cyanobacterium Synechocystis PCC 6803. We demonstrate the purification of an I-D complex, and show that ATP and Mg2+ are absolute requirements for the formation of this complex, probably as MgATP. However, ATP may be replaced by the slowly hydrolysable analogue, adenosine 5'-[gamma-thio]triphosphate, and, to a minor extent, by ADP and the non-hydrolysable ATP analogue, adenosine 5'-[beta,gamma-imido]triphosphate, all of which suggests that ATP hydrolysis is not necessary for the formation of the ChlI-ChlD complex. A sensitive continuous assay was used to detect ATPase activity during Mg2+ chelation, and it was found that the maximum rate of ATP hydrolysis coincided with the maximum rate of Mg2+ insertion. The rate of ATP hydrolysis depended on factors that determined the rate of Mg2+ chelation, such as increasing the concentration of the H subunit and the concentration of protoporphyrin. Thus ATP hydrolysis has been identified as an absolute requirement for the chelation step. The I subunit possessed strong ATPase activity when assayed on its own, whereas the D subunit had no detectable activity, and when the I and D subunits were assayed in combination, the ATPase activity of the I subunit was repressed.

Full Text

The Full Text of this article is available as a PDF (198.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown S. B., Holroyd J. A., Vernon D. I., Troxler R. F., Smith K. M. The effect of N-methylprotoporphyrin IX on the synthesis of photosynthetic pigments in Cyanidium caldarium. Further evidence for the role of haem in the biosynthesis of plant billins. Biochem J. 1982 Nov 15;208(2):487–491. doi: 10.1042/bj2080487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chin D. T., Goff S. A., Webster T., Smith T., Goldberg A. L. Sequence of the lon gene in Escherichia coli. A heat-shock gene which encodes the ATP-dependent protease La. J Biol Chem. 1988 Aug 25;263(24):11718–11728. [PubMed] [Google Scholar]
  3. Dailey H. A., Fleming J. E. Bovine ferrochelatase. Kinetic analysis of inhibition by N-methylprotoporphyrin, manganese, and heme. J Biol Chem. 1983 Oct 10;258(19):11453–11459. [PubMed] [Google Scholar]
  4. Debussche L., Couder M., Thibaut D., Cameron B., Crouzet J., Blanche F. Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol. 1992 Nov;174(22):7445–7451. doi: 10.1128/jb.174.22.7445-7451.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gibson L. C., Jensen P. E., Hunter C. N. Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a BchI-BchD complex. Biochem J. 1999 Jan 15;337(Pt 2):243–251. [PMC free article] [PubMed] [Google Scholar]
  6. Gibson L. C., Willows R. D., Kannangara C. G., von Wettstein D., Hunter C. N. Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1941–1944. doi: 10.1073/pnas.92.6.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hansson M., Kannangara C. G. ATPases and phosphate exchange activities in magnesium chelatase subunits of Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13351–13356. doi: 10.1073/pnas.94.24.13351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jakob U., Scheibel T., Bose S., Reinstein J., Buchner J. Assessment of the ATP binding properties of Hsp90. J Biol Chem. 1996 Apr 26;271(17):10035–10041. doi: 10.1074/jbc.271.17.10035. [DOI] [PubMed] [Google Scholar]
  9. Jensen P. E., Gibson L. C., Henningsen K. W., Hunter C. N. Expression of the chlI, chlD, and chlH genes from the Cyanobacterium synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem. 1996 Jul 12;271(28):16662–16667. doi: 10.1074/jbc.271.28.16662. [DOI] [PubMed] [Google Scholar]
  10. Jensen P. E., Gibson L. C., Hunter C. N. Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocystis PCC6803. Biochem J. 1998 Sep 1;334(Pt 2):335–344. doi: 10.1042/bj3340335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jensen P. E., Willows R. D., Petersen B. L., Vothknecht U. C., Stummann B. M., Kannangara C. G., von Wettstein D., Henningsen K. W. Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Mol Gen Genet. 1996 Mar 7;250(4):383–394. doi: 10.1007/BF02174026. [DOI] [PubMed] [Google Scholar]
  12. Kannangara C. G., Vothknecht U. C., Hansson M., von Wettstein D. Magnesium chelatase: association with ribosomes and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchD. Mol Gen Genet. 1997 Mar 18;254(1):85–92. doi: 10.1007/s004380050394. [DOI] [PubMed] [Google Scholar]
  13. Papenbrock J., Gräfe S., Kruse E., Hänel F., Grimm B. Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I. Plant J. 1997 Nov;12(5):981–990. doi: 10.1046/j.1365-313x.1997.12050981.x. [DOI] [PubMed] [Google Scholar]
  14. Petersen B. L., Jensen P. E., Gibson L. C., Stummann B. M., Hunter C. N., Henningsen K. W. Reconstitution of an active magnesium chelatase enzyme complex from the bchI, -D, and -H gene products of the green sulfur bacterium Chlorobium vibrioforme expressed in Escherichia coli. J Bacteriol. 1998 Feb;180(3):699–704. doi: 10.1128/jb.180.3.699-704.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rosenberg A. H., Lade B. N., Chui D. S., Lin S. W., Dunn J. J., Studier F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56(1):125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
  16. Walker C. J., Weinstein J. D. Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts : substrate specificity, regulation, intactness, and ATP requirements. Plant Physiol. 1991 Apr;95(4):1189–1196. doi: 10.1104/pp.95.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Walker C. J., Weinstein J. D. In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase: resolution of the activity into soluble and membrane-bound fractions. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5789–5793. doi: 10.1073/pnas.88.13.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Walker C. J., Weinstein J. D. The magnesium-insertion step of chlorophyll biosynthesis is a two-stage reaction. Biochem J. 1994 Apr 1;299(Pt 1):277–284. doi: 10.1042/bj2990277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Webb M. R. A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4884–4887. doi: 10.1073/pnas.89.11.4884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Willows R. D., Gibson L. C., Kanangara C. G., Hunter C. N., von Wettstein D. Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem. 1996 Jan 15;235(1-2):438–443. doi: 10.1111/j.1432-1033.1996.00438.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES