Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 1;339(Pt 1):135–141.

Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response.

T W Fawcett 1, J L Martindale 1, K Z Guyton 1, T Hai 1, N J Holbrook 1
PMCID: PMC1220137  PMID: 10085237

Abstract

Gadd153, also known as chop, encodes a member of the CCAAT/enhancer-binding protein (C/EBP) transcription factor family and is transcriptionally activated by cellular stress signals. We recently demonstrated that arsenite treatment of rat pheochromocytoma PC12 cells results in the biphasic induction of Gadd153 mRNA expression, controlled in part through binding of C/EBPbeta and two uncharacterized protein complexes to the C/EBP-ATF (activating transcription factor) composite site in the Gadd153 promoter. In this report, we identified components of these additional complexes as two ATF/CREB (cAMP-responsive-element-binding protein) transcription factors having differential binding activities dependent upon the time of arsenite exposure. During arsenite treatment of PC12 cells, we observed enhanced binding of ATF4 to the C/EBP-ATF site at 2 h as Gadd153 mRNA levels increased, and enhanced binding of ATF3 complexes at 6 h as Gadd153 expression declined. We further demonstrated that ATF4 activates, while ATF3 represses, Gadd153 promoter activity through the C/EBP-ATF site. ATF3 also repressed ATF4-mediated transactivation and arsenite-induced activation of the Gadd153 promoter. Our results suggest that numerous members of the ATF/CREB family are involved in the cellular stress response, and that regulation of stress-induced biphasic Gadd153 expression in PC12 cells involves the ordered, sequential binding of multiple transcription factor complexes to the C/EBP-ATF composite site.

Full Text

The Full Text of this article is available as a PDF (169.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avitahl N., Calame K. The C/EBP family of proteins distorts DNA upon binding but does not introduce a large directed bend. J Biol Chem. 1994 Sep 23;269(38):23553–23562. [PubMed] [Google Scholar]
  2. Barone M. V., Crozat A., Tabaee A., Philipson L., Ron D. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev. 1994 Feb 15;8(4):453–464. doi: 10.1101/gad.8.4.453. [DOI] [PubMed] [Google Scholar]
  3. Bartlett J. D., Luethy J. D., Carlson S. G., Sollott S. J., Holbrook N. J. Calcium ionophore A23187 induces expression of the growth arrest and DNA damage inducible CCAAT/enhancer-binding protein (C/EBP)-related gene, gadd153. Ca2+ increases transcriptional activity and mRNA stability. J Biol Chem. 1992 Oct 5;267(28):20465–20470. [PubMed] [Google Scholar]
  4. Batchvarova N., Wang X. Z., Ron D. Inhibition of adipogenesis by the stress-induced protein CHOP (Gadd153). EMBO J. 1995 Oct 2;14(19):4654–4661. doi: 10.1002/j.1460-2075.1995.tb00147.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benbrook D. M., Jones N. C. Different binding specificities and transactivation of variant CRE's by CREB complexes. Nucleic Acids Res. 1994 Apr 25;22(8):1463–1469. doi: 10.1093/nar/22.8.1463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bruhat A., Jousse C., Wang X. Z., Ron D., Ferrara M., Fafournoux P. Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels. J Biol Chem. 1997 Jul 11;272(28):17588–17593. doi: 10.1074/jbc.272.28.17588. [DOI] [PubMed] [Google Scholar]
  7. Butscher W. G., Powers C., Olive M., Vinson C., Gardner K. Coordinate transactivation of the interleukin-2 CD28 response element by c-Rel and ATF-1/CREB2. J Biol Chem. 1998 Jan 2;273(1):552–560. doi: 10.1074/jbc.273.1.552. [DOI] [PubMed] [Google Scholar]
  8. Carlson S. G., Fawcett T. W., Bartlett J. D., Bernier M., Holbrook N. J. Regulation of the C/EBP-related gene gadd153 by glucose deprivation. Mol Cell Biol. 1993 Aug;13(8):4736–4744. doi: 10.1128/mcb.13.8.4736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen B. P., Wolfgang C. D., Hai T. Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol. 1996 Mar;16(3):1157–1168. doi: 10.1128/mcb.16.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chevray P. M., Nathans D. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5789–5793. doi: 10.1073/pnas.89.13.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crawford D. R., Schools G. P., Davies K. J. Oxidant-inducible adapt 15 RNA is associated with growth arrest- and DNA damage-inducible gadd153 and gadd45. Arch Biochem Biophys. 1996 May 15;329(2):137–144. doi: 10.1006/abbi.1996.0202. [DOI] [PubMed] [Google Scholar]
  12. Delmastro D. A., Li J., Vaisman A., Solle M., Chaney S. G. DNA damage inducible-gene expression following platinum treatment in human ovarian carcinoma cell lines. Cancer Chemother Pharmacol. 1997;39(3):245–253. doi: 10.1007/s002800050568. [DOI] [PubMed] [Google Scholar]
  13. Eastman H. B., Fawcett T. W., Udelsman R., Holbrook N. J. Effects of perturbations of the hypothalamic-pituitary-adrenal axis on the acute phase response: altered C/EBP and acute phase response gene expression in lipopolysaccharide-treated rats. Shock. 1996 Oct;6(4):286–292. doi: 10.1097/00024382-199610000-00011. [DOI] [PubMed] [Google Scholar]
  14. Estes S. D., Stoler D. L., Anderson G. R. Normal fibroblasts induce the C/EBP beta and ATF-4 bZIP transcription factors in response to anoxia. Exp Cell Res. 1995 Sep;220(1):47–54. doi: 10.1006/excr.1995.1290. [DOI] [PubMed] [Google Scholar]
  15. Eymin B., Dubrez L., Allouche M., Solary E. Increased gadd153 messenger RNA level is associated with apoptosis in human leukemic cells treated with etoposide. Cancer Res. 1997 Feb 15;57(4):686–695. [PubMed] [Google Scholar]
  16. Fawcett T. W., Eastman H. B., Martindale J. L., Holbrook N. J. Physical and functional association between GADD153 and CCAAT/enhancer-binding protein beta during cellular stress. J Biol Chem. 1996 Jun 14;271(24):14285–14289. doi: 10.1074/jbc.271.24.14285. [DOI] [PubMed] [Google Scholar]
  17. Fornace A. J., Jr, Nebert D. W., Hollander M. C., Luethy J. D., Papathanasiou M., Fargnoli J., Holbrook N. J. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol. 1989 Oct;9(10):4196–4203. doi: 10.1128/mcb.9.10.4196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Friedman A. D. GADD153/CHOP, a DNA damage-inducible protein, reduced CAAT/enhancer binding protein activities and increased apoptosis in 32D c13 myeloid cells. Cancer Res. 1996 Jul 15;56(14):3250–3256. [PubMed] [Google Scholar]
  19. Gately D. P., Howell S. B. Paclitaxel activation of the GADD153 promoter through a cellular injury response element containing an essential Sp1 binding site. J Biol Chem. 1996 Aug 23;271(34):20588–20593. doi: 10.1074/jbc.271.34.20588. [DOI] [PubMed] [Google Scholar]
  20. Gately D. P., Jones J. A., Christen R., Barton R. M., Los G., Howell S. B. Induction of the growth arrest and DNA damage-inducible gene GADD153 by cisplatin in vitro and in vivo. Br J Cancer. 1994 Dec;70(6):1102–1106. doi: 10.1038/bjc.1994.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gately D. P., Sharma A., Christen R. D., Howell S. B. Cisplatin and taxol activate different signal pathways regulating cellular injury-induced expression of GADD153. Br J Cancer. 1996 Jan;73(1):18–23. doi: 10.1038/bjc.1996.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gujuluva C. N., Baek J. H., Shin K. H., Cherrick H. M., Park N. H. Effect of UV-irradiation on cell cycle, viability and the expression of p53, gadd153 and gadd45 genes in normal and HPV-immortalized human oral keratinocytes. Oncogene. 1994 Jul;9(7):1819–1827. [PubMed] [Google Scholar]
  24. Guyton K. Z., Spitz D. R., Holbrook N. J. Expression of stress response genes GADD153, c-jun, and heme oxygenase-1 in H2O2- and O2-resistant fibroblasts. Free Radic Biol Med. 1996;20(5):735–741. doi: 10.1016/0891-5849(95)02151-5. [DOI] [PubMed] [Google Scholar]
  25. Guyton K. Z., Xu Q., Holbrook N. J. Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element. Biochem J. 1996 Mar 1;314(Pt 2):547–554. doi: 10.1042/bj3140547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Halleck M. M., Holbrook N. J., Skinner J., Liu H., Stevens J. L. The molecular response to reductive stress in LLC-PK1 renal epithelial cells: coordinate transcriptional regulation of gadd153 and grp78 genes by thiols. Cell Stress Chaperones. 1997 Mar;2(1):31–40. doi: 10.1379/1466-1268(1997)002<0031:tmrtrs>2.3.co;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jackman J., Alamo I., Jr, Fornace A. J., Jr Genotoxic stress confers preferential and coordinate messenger RNA stability on the five gadd genes. Cancer Res. 1994 Nov 1;54(21):5656–5662. [PubMed] [Google Scholar]
  28. Jeong J. K., Dybing E., Søderlund E., Brunborg G., Holme J. A., Lau S. S., Monks T. J. DNA damage, gadd153 expression, and cytotoxicity in plateau-phase renal proximal tubular epithelial cells treated with a quinol thioether. Arch Biochem Biophys. 1997 May 15;341(2):300–308. doi: 10.1006/abbi.1997.9969. [DOI] [PubMed] [Google Scholar]
  29. Jeong J. K., Huang Q., Lau S. S., Monks T. J. The response of renal tubular epithelial cells to physiologically and chemically induced growth arrest. J Biol Chem. 1997 Mar 14;272(11):7511–7518. doi: 10.1074/jbc.272.11.7511. [DOI] [PubMed] [Google Scholar]
  30. Jeong J. K., Stevens J. L., Lau S. S., Monks T. J. Quinone thioether-mediated DNA damage, growth arrest, and gadd153 expression in renal proximal tubular epithelial cells. Mol Pharmacol. 1996 Sep;50(3):592–598. [PubMed] [Google Scholar]
  31. Kaeck M., Lu J., Strange R., Ip C., Ganther H. E., Thompson H. J. Differential induction of growth arrest inducible genes by selenium compounds. Biochem Pharmacol. 1997 Apr 4;53(7):921–926. doi: 10.1016/s0006-2952(97)00103-2. [DOI] [PubMed] [Google Scholar]
  32. Karpinski B. A., Morle G. D., Huggenvik J., Uhler M. D., Leiden J. M. Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4820–4824. doi: 10.1073/pnas.89.11.4820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kawai T., Matsumoto M., Takeda K., Sanjo H., Akira S. ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol Cell Biol. 1998 Mar;18(3):1642–1651. doi: 10.1128/mcb.18.3.1642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Liang G., Hai T. Characterization of human activating transcription factor 4, a transcriptional activator that interacts with multiple domains of cAMP-responsive element-binding protein (CREB)-binding protein. J Biol Chem. 1997 Sep 19;272(38):24088–24095. doi: 10.1074/jbc.272.38.24088. [DOI] [PubMed] [Google Scholar]
  35. Luethy J. D., Fargnoli J., Park J. S., Fornace A. J., Jr, Holbrook N. J. Isolation and characterization of the hamster gadd153 gene. Activation of promoter activity by agents that damage DNA. J Biol Chem. 1990 Sep 25;265(27):16521–16526. [PubMed] [Google Scholar]
  36. Luethy J. D., Holbrook N. J. Activation of the gadd153 promoter by genotoxic agents: a rapid and specific response to DNA damage. Cancer Res. 1992 Jan 1;52(1):5–10. [PubMed] [Google Scholar]
  37. Matsumoto M., Minami M., Takeda K., Sakao Y., Akira S. Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett. 1996 Oct 21;395(2-3):143–147. doi: 10.1016/0014-5793(96)01016-2. [DOI] [PubMed] [Google Scholar]
  38. Mielnicki L. M., Pruitt S. C. Isolation and nucleotide sequence of a murine cDNA homologous to human activating transcription factor 4. Nucleic Acids Res. 1991 Nov 25;19(22):6332–6332. doi: 10.1093/nar/19.22.6332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Montminy M. R., Sevarino K. A., Wagner J. A., Mandel G., Goodman R. H. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6682–6686. doi: 10.1073/pnas.83.18.6682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Outinen P. A., Sood S. K., Liaw P. C., Sarge K. D., Maeda N., Hirsh J., Ribau J., Podor T. J., Weitz J. I., Austin R. C. Characterization of the stress-inducing effects of homocysteine. Biochem J. 1998 May 15;332(Pt 1):213–221. doi: 10.1042/bj3320213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Price B. D., Calderwood S. K. Gadd45 and Gadd153 messenger RNA levels are increased during hypoxia and after exposure of cells to agents which elevate the levels of the glucose-regulated proteins. Cancer Res. 1992 Jul 1;52(13):3814–3817. [PubMed] [Google Scholar]
  42. Rathmell W. K., Kaufmann W. K., Hurt J. C., Byrd L. L., Chu G. DNA-dependent protein kinase is not required for accumulation of p53 or cell cycle arrest after DNA damage. Cancer Res. 1997 Jan 1;57(1):68–74. [PubMed] [Google Scholar]
  43. Ron D., Habener J. F. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992 Mar;6(3):439–453. doi: 10.1101/gad.6.3.439. [DOI] [PubMed] [Google Scholar]
  44. Shimizu M., Nomura Y., Suzuki H., Ichikawa E., Takeuchi A., Suzuki M., Nakamura T., Nakajima T., Oda K. Activation of the rat cyclin A promoter by ATF2 and Jun family members and its suppression by ATF4. Exp Cell Res. 1998 Feb 25;239(1):93–103. doi: 10.1006/excr.1997.3884. [DOI] [PubMed] [Google Scholar]
  45. Shuman J. D., Vinson C. R., McKnight S. L. Evidence of changes in protease sensitivity and subunit exchange rate on DNA binding by C/EBP. Science. 1990 Aug 17;249(4970):771–774. doi: 10.1126/science.2202050. [DOI] [PubMed] [Google Scholar]
  46. Sylvester S. L., ap Rhys C. M., Luethy-Martindale J. D., Holbrook N. J. Induction of GADD153, a CCAAT/enhancer-binding protein (C/EBP)-related gene, during the acute phase response in rats. Evidence for the involvement of C/EBPs in regulating its expression. J Biol Chem. 1994 Aug 5;269(31):20119–20125. [PubMed] [Google Scholar]
  47. Tsujimoto A., Nyunoya H., Morita T., Sato T., Shimotohno K. Isolation of cDNAs for DNA-binding proteins which specifically bind to a tax-responsive enhancer element in the long terminal repeat of human T-cell leukemia virus type I. J Virol. 1991 Mar;65(3):1420–1426. doi: 10.1128/jvi.65.3.1420-1426.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ubeda M., Wang X. Z., Zinszner H., Wu I., Habener J. F., Ron D. Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol Cell Biol. 1996 Apr;16(4):1479–1489. doi: 10.1128/mcb.16.4.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vallejo M., Ron D., Miller C. P., Habener J. F. C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4679–4683. doi: 10.1073/pnas.90.10.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vinson C. R., Hai T., Boyd S. M. Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design. Genes Dev. 1993 Jun;7(6):1047–1058. doi: 10.1101/gad.7.6.1047. [DOI] [PubMed] [Google Scholar]
  51. Wang X. Z., Kuroda M., Sok J., Batchvarova N., Kimmel R., Chung P., Zinszner H., Ron D. Identification of novel stress-induced genes downstream of chop. EMBO J. 1998 Jul 1;17(13):3619–3630. doi: 10.1093/emboj/17.13.3619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wang X. Z., Lawson B., Brewer J. W., Zinszner H., Sanjay A., Mi L. J., Boorstein R., Kreibich G., Hendershot L. M., Ron D. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol Cell Biol. 1996 Aug;16(8):4273–4280. doi: 10.1128/mcb.16.8.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wolfgang C. D., Chen B. P., Martindale J. L., Holbrook N. J., Hai T. gadd153/Chop10, a potential target gene of the transcriptional repressor ATF3. Mol Cell Biol. 1997 Nov;17(11):6700–6707. doi: 10.1128/mcb.17.11.6700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zhan Q., Fan S., Smith M. L., Bae I., Yu K., Alamo I., Jr, O'Connor P. M., Fornace A. J., Jr Abrogation of p53 function affects gadd gene responses to DNA base-damaging agents and starvation. DNA Cell Biol. 1996 Oct;15(10):805–815. doi: 10.1089/dna.1996.15.805. [DOI] [PubMed] [Google Scholar]
  55. Zhan Q., Lord K. A., Alamo I., Jr, Hollander M. C., Carrier F., Ron D., Kohn K. W., Hoffman B., Liebermann D. A., Fornace A. J., Jr The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol. 1994 Apr;14(4):2361–2371. doi: 10.1128/mcb.14.4.2361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zinszner H., Kuroda M., Wang X., Batchvarova N., Lightfoot R. T., Remotti H., Stevens J. L., Ron D. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998 Apr 1;12(7):982–995. doi: 10.1101/gad.12.7.982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES