Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 1;339(Pt 1):193–199.

High-affinity binding of very-long-chain fatty acyl-CoA esters to the peroxisomal non-specific lipid-transfer protein (sterol carrier protein-2).

T B Dansen 1, J Westerman 1, F S Wouters 1, R J Wanders 1, A van Hoek 1, T W Gadella Jr 1, K W Wirtz 1
PMCID: PMC1220144  PMID: 10085244

Abstract

Binding of fluorescent fatty acids to bovine liver non-specific lipid-transfer protein (nsL-TP) was assessed by measuring fluorescence resonance energy transfer (FRET) between the single tryptophan residue of nsL-TP and the fluorophore. Upon addition of pyrene dodecanoic acid (Pyr-C12) and cis-parinaric acid to nsL-TP, FRET was observed indicating that these fatty acids were accommodated in the lipid binding site closely positioned to the tryptophan residue. Substantial binding was observed only when these fatty acids were presented in the monomeric form complexed to beta-cyclodextrin. As shown by time-resolved fluorescence measurements, translocation of Pyr-C12 from the Pyr-C12-beta-cyclodextrin complex to nsL-TP changed dramatically the direct molecular environment of the pyrene moiety: i.e. the fluorescence lifetime of the directly excited pyrene increased at least by 25% and a distinct rotational correlation time of 7 ns was observed. In order to evaluate the affinity of nsL-TP for intermediates of the beta-oxidation pathway, a binding assay was developed based on the ability of fatty acyl derivatives to displace Pyr-C12 from the lipid binding site as reflected by the reduction of FRET. Hexadecanoyl-CoA and 2-hexadecenoyl-CoA were found to bind readily to nsL-TP, whereas 3-hydroxyhexadecanoyl-CoA and 3-ketohexadecanoyl-CoA bound poorly. The highest affinities were observed for the very-long-chain fatty acyl-CoA esters (24:0-CoA, 26:0-CoA) and their enoyl derivatives (24:1-CoA, 26:1-CoA). Binding of non-esterified hexadecanoic acid and tetracosanoic acid (24:0) was negligible.

Full Text

The Full Text of this article is available as a PDF (186.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonenkov V. D., Van Veldhoven P. P., Waelkens E., Mannaerts G. P. Substrate specificities of 3-oxoacyl-CoA thiolase A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty acids and bile acid intermediates. J Biol Chem. 1997 Oct 10;272(41):26023–26031. doi: 10.1074/jbc.272.41.26023. [DOI] [PubMed] [Google Scholar]
  2. Appelkvist E. L., Dallner G. Possible involvement of fatty acid binding protein in peroxisomal beta-oxidation of fatty acids. Biochim Biophys Acta. 1980 Jan 18;617(1):156–160. doi: 10.1016/0005-2760(80)90233-7. [DOI] [PubMed] [Google Scholar]
  3. Arondel V., Vergnolle C., Tchang F., Kader J. C. Bifunctional lipid-transfer: fatty acid-binding proteins in plants. 1990 Oct 15-Nov 8Mol Cell Biochem. 98(1-2):49–56. doi: 10.1007/BF00231367. [DOI] [PubMed] [Google Scholar]
  4. Bastiaens P. I., van Hoek A., Benen J. A., Brochon J. C., Visser A. J. Conformational dynamics and intersubunit energy transfer in wild-type and mutant lipoamide dehydrogenase from Azotobacter vinelandii. A multidimensional time-resolved polarized fluorescence study. Biophys J. 1992 Sep;63(3):839–853. doi: 10.1016/S0006-3495(92)81659-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bloj B., Zilversmit D. B. Rat liver proteins capable of transferring phosphatidylethanolamine. Purification and transfer activity for other phospholipids and cholesterol. J Biol Chem. 1977 Mar 10;252(5):1613–1619. [PubMed] [Google Scholar]
  6. Brochon J. C. Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol. 1994;240:262–311. doi: 10.1016/s0076-6879(94)40052-0. [DOI] [PubMed] [Google Scholar]
  7. Ceolotto C., Flekl W., Schorsch F. J., Tahotna D., Hapala I., Hrastnik C., Paltauf F., Daum G. Characterization of a non-specific lipid transfer protein associated with the peroxisomal membrane of the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta. 1996 Nov 13;1285(1):71–78. doi: 10.1016/s0005-2736(96)00147-2. [DOI] [PubMed] [Google Scholar]
  8. Crain R. C., Zilversmit D. B. Two nonspecific phospholipid exchange proteins from beef liver. I. Purification and characterization. Biochemistry. 1980 Apr 1;19(7):1433–1439. doi: 10.1021/bi00548a026. [DOI] [PubMed] [Google Scholar]
  9. Frolov A., Cho T. H., Billheimer J. T., Schroeder F. Sterol carrier protein-2, a new fatty acyl coenzyme A-binding protein. J Biol Chem. 1996 Dec 13;271(50):31878–31884. doi: 10.1074/jbc.271.50.31878. [DOI] [PubMed] [Google Scholar]
  10. Gadella T. W., Jr, Bastiaens P. I., Visser A. J., Wirtz K. W. Shape and lipid-binding site of the nonspecific lipid-transfer protein (sterol carrier protein 2): a steady-state and time-resolved fluorescence study. Biochemistry. 1991 Jun 4;30(22):5555–5564. doi: 10.1021/bi00236a031. [DOI] [PubMed] [Google Scholar]
  11. Gadella T. W., Jr, Wirtz K. W. The low-affinity lipid binding site of the non-specific lipid transfer protein. Implications for its mode of action. Biochim Biophys Acta. 1991 Nov 18;1070(1):237–245. doi: 10.1016/0005-2736(91)90170-d. [DOI] [PubMed] [Google Scholar]
  12. Glatz J. F., van der Vusse G. J. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res. 1996 Sep;35(3):243–282. doi: 10.1016/s0163-7827(96)00006-9. [DOI] [PubMed] [Google Scholar]
  13. Gnamusch E., Kalaus C., Hrastnik C., Paltauf F., Daum G. Transport of phospholipids between subcellular membranes of wild-type yeast cells and of the phosphatidylinositol transfer protein-deficient strain Saccharomyces cerevisiae sec 14. Biochim Biophys Acta. 1992 Oct 19;1111(1):120–126. doi: 10.1016/0005-2736(92)90281-p. [DOI] [PubMed] [Google Scholar]
  14. Herr F. M., Aronson J., Storch J. Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes. Biochemistry. 1996 Jan 30;35(4):1296–1303. doi: 10.1021/bi952204b. [DOI] [PubMed] [Google Scholar]
  15. Jyothirmayi N., Ramadoss C. S. Soybean lipoxygenase catalysed oxygenation of unsaturated fatty acid encapsulated in cyclodextrin. Biochim Biophys Acta. 1991 May 8;1083(2):193–200. doi: 10.1016/0005-2760(91)90042-g. [DOI] [PubMed] [Google Scholar]
  16. Kader Jean-Claude. LIPID-TRANSFER PROTEINS IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):627–654. doi: 10.1146/annurev.arplant.47.1.627. [DOI] [PubMed] [Google Scholar]
  17. Keller G. A., Scallen T. J., Clarke D., Maher P. A., Krisans S. K., Singer S. J. Subcellular localization of sterol carrier protein-2 in rat hepatocytes: its primary localization to peroxisomes. J Cell Biol. 1989 Apr;108(4):1353–1361. doi: 10.1083/jcb.108.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maatman R. G., van Moerkerk H. T., Nooren I. M., van Zoelen E. J., Veerkamp J. H. Expression of human liver fatty acid-binding protein in Escherichia coli and comparative analysis of its binding characteristics with muscle fatty acid-binding protein. Biochim Biophys Acta. 1994 Aug 25;1214(1):1–10. doi: 10.1016/0005-2760(94)90002-7. [DOI] [PubMed] [Google Scholar]
  19. Meijer E. A., de Vries S. C., Sterk P., Gadella D. W., Jr, Wirtz K. W., Hendriks T. Characterization of the non-specific lipid transfer protein EP2 from carrot (Daucus carota L.). Mol Cell Biochem. 1993 Jun 9;123(1-2):159–166. doi: 10.1007/BF01076488. [DOI] [PubMed] [Google Scholar]
  20. Nichols J. W. Kinetics of fluorescent-labeled phosphatidylcholine transfer between nonspecific lipid transfer protein and phospholipid vesicles. Biochemistry. 1988 Mar 22;27(6):1889–1896. doi: 10.1021/bi00406a014. [DOI] [PubMed] [Google Scholar]
  21. Niki T., Bun-Ya M., Hiraga Y., Muro Y., Kamiryo T. Near-stoichiometric interaction between the non-specific lipid-transfer protein of the yeast Candida tropicalis and peroxisomal acyl-coenzyme A oxidase prevents the thermal denaturation of the enzyme in vitro. Yeast. 1994 Nov;10(11):1467–1476. doi: 10.1002/yea.320101110. [DOI] [PubMed] [Google Scholar]
  22. Ossendorp B. C., Geijtenbeek T. B., Wirtz K. W. The precursor form of the rat liver non-specific lipid-transfer protein, expressed in Escherichia coli, has lipid transfer activity. FEBS Lett. 1992 Jan 20;296(2):179–183. doi: 10.1016/0014-5793(92)80374-p. [DOI] [PubMed] [Google Scholar]
  23. Ostergaard J., Vergnolle C., Schoentgen F., Kader J. C. Acyl-binding/lipid-transfer proteins from rape seedlings, a novel category of proteins interacting with lipids. Biochim Biophys Acta. 1993 Oct 13;1170(2):109–117. doi: 10.1016/0005-2760(93)90059-i. [DOI] [PubMed] [Google Scholar]
  24. Rasmussen J. T., Börchers T., Knudsen J. Comparison of the binding affinities of acyl-CoA-binding protein and fatty-acid-binding protein for long-chain acyl-CoA esters. Biochem J. 1990 Feb 1;265(3):849–855. doi: 10.1042/bj2650849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reubsaet F. A., Veerkamp J. H., Brückwilder M. L., Trijbels J. M., Monnens L. A. The involvement of fatty acid binding protein in peroxisomal fatty acid oxidation. FEBS Lett. 1990 Jul 16;267(2):229–230. doi: 10.1016/0014-5793(90)80931-8. [DOI] [PubMed] [Google Scholar]
  26. Richieri G. V., Ogata R. T., Kleinfeld A. M. Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J Biol Chem. 1994 Sep 30;269(39):23918–23930. [PubMed] [Google Scholar]
  27. Rolf B., Oudenampsen-Krüger E., Börchers T., Faergeman N. J., Knudsen J., Lezius A., Spener F. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein. Biochim Biophys Acta. 1995 Dec 7;1259(3):245–253. doi: 10.1016/0005-2760(95)00170-0. [DOI] [PubMed] [Google Scholar]
  28. Scallen T. J., Srikantaiah M. V., Seetharam B., Hansbury E., Gavey K. L. Proceedings: Sterol carrier protein hypothesis. Fed Proc. 1974 Jun;33(6):1733–1746. [PubMed] [Google Scholar]
  29. Schroeder F., Butko P., Nemecz G., Scallen T. J. Interaction of fluorescent delta 5,7,9(11),22-ergostatetraen-3 beta-ol with sterol carrier protein-2. J Biol Chem. 1990 Jan 5;265(1):151–157. [PubMed] [Google Scholar]
  30. Schroeder F., Myers-Payne S. C., Billheimer J. T., Wood W. G. Probing the ligand binding sites of fatty acid and sterol carrier proteins: effects of ethanol. Biochemistry. 1995 Sep 19;34(37):11919–11927. doi: 10.1021/bi00037a033. [DOI] [PubMed] [Google Scholar]
  31. Seedorf U., Brysch P., Engel T., Schrage K., Assmann G. Sterol carrier protein X is peroxisomal 3-oxoacyl coenzyme A thiolase with intrinsic sterol carrier and lipid transfer activity. J Biol Chem. 1994 Aug 19;269(33):21277–21283. [PubMed] [Google Scholar]
  32. Seedorf U., Raabe M., Ellinghaus P., Kannenberg F., Fobker M., Engel T., Denis S., Wouters F., Wirtz K. W., Wanders R. J. Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes Dev. 1998 Apr 15;12(8):1189–1201. doi: 10.1101/gad.12.8.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Seubert W., Lamberts I., Kramer R., Ohly B. On the mechanism of malonyl-CoA-independent fatty acid synthesis. I. The mechanism of elongation of long-chain fatty acids by acetyl-CoA. Biochim Biophys Acta. 1968 Dec 18;164(3):498–517. doi: 10.1016/0005-2760(68)90180-x. [DOI] [PubMed] [Google Scholar]
  34. Singh I., Moser A. E., Goldfischer S., Moser H. W. Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4203–4207. doi: 10.1073/pnas.81.13.4203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stolowich N. J., Frolov A., Atshaves B., Murphy E. J., Jolly C. A., Billheimer J. T., Scott A. I., Schroeder F. The sterol carrier protein-2 fatty acid binding site: an NMR, circular dichroic, and fluorescence spectroscopic determination. Biochemistry. 1997 Feb 18;36(7):1719–1729. doi: 10.1021/bi962317a. [DOI] [PubMed] [Google Scholar]
  36. Suzuki Y., Yamaguchi S., Orii T., Tsuneoka M., Tashiro Y. Nonspecific lipid transfer protein (sterol carrier protein-2) defective in patients with deficient peroxisomes. Cell Struct Funct. 1990 Oct;15(5):301–308. doi: 10.1247/csf.15.301. [DOI] [PubMed] [Google Scholar]
  37. Tsuboi S., Osafune T., Tsugeki R., Nishimura M., Yamada M. Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J Biochem. 1992 Apr;111(4):500–508. doi: 10.1093/oxfordjournals.jbchem.a123787. [DOI] [PubMed] [Google Scholar]
  38. Tsuneoka M., Yamamoto A., Fujiki Y., Tashiro Y. Nonspecific lipid transfer protein (sterol carrier protein-2) is located in rat liver peroxisomes. J Biochem. 1988 Oct;104(4):560–564. doi: 10.1093/oxfordjournals.jbchem.a122510. [DOI] [PubMed] [Google Scholar]
  39. Van der Krift T. P., Leunissen J., Teerlink T., Van Heusden G. P., Verkleij A. J., Wirtz K. W. Ultrastructural localization of a peroxisomal protein in rat liver using the specific antibody against the non-specific lipid transfer protein (sterol carrier protein 2). Biochim Biophys Acta. 1985 Jan 25;812(2):387–392. doi: 10.1016/0005-2736(85)90313-x. [DOI] [PubMed] [Google Scholar]
  40. Wanders R. J., Denis S., Wouters F., Wirtz K. W., Seedorf U. Sterol carrier protein X (SCPx) is a peroxisomal branched-chain beta-ketothiolase specifically reacting with 3-oxo-pristanoyl-CoA: a new, unique role for SCPx in branched-chain fatty acid metabolism in peroxisomes. Biochem Biophys Res Commun. 1997 Jul 30;236(3):565–569. doi: 10.1006/bbrc.1997.7007. [DOI] [PubMed] [Google Scholar]
  41. Wirtz K. W., Kamp H. H., van Deenen L. L. Isolation of a protein from beef liver which specifically stimulates the exchange of phosphatidylcholine. Biochim Biophys Acta. 1972 Aug 9;274(2):606–617. doi: 10.1016/0005-2736(72)90207-6. [DOI] [PubMed] [Google Scholar]
  42. Wirtz K. W. Phospholipid transfer proteins revisited. Biochem J. 1997 Jun 1;324(Pt 2):353–360. doi: 10.1042/bj3240353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wootan M. G., Storch J. Regulation of fluorescent fatty acid transfer from adipocyte and heart fatty acid binding proteins by acceptor membrane lipid composition and structure. J Biol Chem. 1994 Apr 8;269(14):10517–10523. [PubMed] [Google Scholar]
  44. Wouters F. S., Bastiaens P. I., Wirtz K. W., Jovin T. M. FRET microscopy demonstrates molecular association of non-specific lipid transfer protein (nsL-TP) with fatty acid oxidation enzymes in peroxisomes. EMBO J. 1998 Dec 15;17(24):7179–7189. doi: 10.1093/emboj/17.24.7179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. van Amerongen A., Demel R. A., Westerman J., Wirtz K. W. Transfer of cholesterol and oxysterol derivatives by the nonspecific lipid transfer protein (sterol carrier protein 2): a study on its mode of action. Biochim Biophys Acta. 1989 Jul 17;1004(1):36–43. doi: 10.1016/0005-2760(89)90209-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES