Abstract
Human tissues contain two types of phosphomannomutase, PMM1 and PMM2. Mutations in the PMM2 gene are responsible for the most common form of carbohydrate-deficient glycoprotein syndrome [Matthijs, Schollen, Pardon, Veiga-da-Cunha, Jaeken, Cassiman and Van Schaftingen (1997) Nat. Genet. 19, 88-92]. The protein encoded by this gene has now been produced in Escherichia coli and purified to homogeneity, and its properties have been compared with those of recombinant human PMM1. PMM2 converts mannose 1-phosphate into mannose 6-phosphate about 20 times more rapidly than glucose 1-phosphate to glucose 6-phosphate, whereas PMM1 displays identical Vmax values with both substrates. The Ka values for both mannose 1,6-bisphosphate and glucose 1,6-bisphosphate are significantly lower in the case of PMM2 than in the case of PMM1. Like PMM1, PMM2 forms a phosphoenzyme with the chemical characteristics of an acyl-phosphate. PMM1 and PMM2 hydrolyse different hexose bisphosphates (glucose 1,6-bisphosphate, mannose 1,6-bisphosphate, fructose 1,6-bisphosphate) at maximal rates of approximately 3.5 and 0.3% of their PMM activity, respectively. Fructose 1,6-bisphosphate does not activate PMM2 but causes a time-dependent stimulation of PMM1 due to the progressive formation of mannose 1,6-bisphosphate from fructose 1,6-bisphosphate and mannose 1-phosphate. Experiments with specific antibodies, kinetic studies and Northern blots indicated that PMM2 is the only detectable isozyme in most rat tissues except brain and lung, where PMM1 accounts for about 66 and 13% of the total activities, respectively.
Full Text
The Full Text of this article is available as a PDF (165.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bjursell C., Stibler H., Wahlström J., Kristiansson B., Skovby F., Strömme P., Blennow G., Martinsson T. Fine mapping of the gene for carbohydrate-deficient glycoprotein syndrome, type I (CDG1): linkage disequilibrium and founder effect in Scandinavian families. Genomics. 1997 Feb 1;39(3):247–253. doi: 10.1006/geno.1996.4488. [DOI] [PubMed] [Google Scholar]
- Boles E., Liebetrau W., Hofmann M., Zimmermann F. K. A family of hexosephosphate mutases in Saccharomyces cerevisiae. Eur J Biochem. 1994 Feb 15;220(1):83–96. doi: 10.1111/j.1432-1033.1994.tb18601.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Climent F., Carreras M., Carreras J. Metabolism of glucose 1,6-P2. I. Enzymes involved in the synthesis of glucose 1,6-P2 in pig tissues. Comp Biochem Physiol B. 1985;81(3):737–742. doi: 10.1016/0305-0491(85)90397-9. [DOI] [PubMed] [Google Scholar]
- Collet J. F., Stroobant V., Pirard M., Delpierre G., Van Schaftingen E. A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J Biol Chem. 1998 Jun 5;273(23):14107–14112. doi: 10.1074/jbc.273.23.14107. [DOI] [PubMed] [Google Scholar]
- Coyne M. J., Jr, Russell K. S., Coyle C. L., Goldberg J. B. The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J Bacteriol. 1994 Jun;176(12):3500–3507. doi: 10.1128/jb.176.12.3500-3507.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies D. R., Detheux M., Van Schaftingen E. Fructose 1-phosphate and the regulation of glucokinase activity in isolated hepatocytes. Eur J Biochem. 1990 Sep 11;192(2):283–289. doi: 10.1111/j.1432-1033.1990.tb19225.x. [DOI] [PubMed] [Google Scholar]
- Glisin V., Crkvenjakov R., Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry. 1974 Jun 4;13(12):2633–2637. doi: 10.1021/bi00709a025. [DOI] [PubMed] [Google Scholar]
- Guha S. K., Rose Z. B. The synthesis of mannose 1-phosphate in brain. Arch Biochem Biophys. 1985 Nov 15;243(1):168–173. doi: 10.1016/0003-9861(85)90785-4. [DOI] [PubMed] [Google Scholar]
- Hansen S. H., Frank S. R., Casanova J. E. Cloning and characterization of human phosphomannomutase, a mammalian homologue of yeast SEC53. Glycobiology. 1997 Sep;7(6):829–834. doi: 10.1093/glycob/7.6.829. [DOI] [PubMed] [Google Scholar]
- Jaeken J., Artigas J., Barone R., Fiumara A., de Koning T. J., Poll-The B. T., de Rijk-van Andel J. F., Hoffmann G. F., Assmann B., Mayatepek E. Phosphomannomutase deficiency is the main cause of carbohydrate-deficient glycoprotein syndrome with type I isoelectrofocusing pattern of serum sialotransferrins. J Inherit Metab Dis. 1997 Jul;20(3):447–449. doi: 10.1023/a:1005331523477. [DOI] [PubMed] [Google Scholar]
- Jaeken J., Matthijs G., Barone R., Carchon H. Carbohydrate deficient glycoprotein (CDG) syndrome type I. J Med Genet. 1997 Jan;34(1):73–76. doi: 10.1136/jmg.34.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kepes F., Schekman R. The yeast SEC53 gene encodes phosphomannomutase. J Biol Chem. 1988 Jul 5;263(19):9155–9161. [PubMed] [Google Scholar]
- Köplin R., Arnold W., Hötte B., Simon R., Wang G., Pühler A. Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. J Bacteriol. 1992 Jan;174(1):191–199. doi: 10.1128/jb.174.1.191-199.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martinsson T., Bjursell C., Stibler H., Kristiansson B., Skovby F., Jaeken J., Blennow G., Strömme P., Hanefeld F., Wahlström J. Linkage of a locus for carbohydrate-deficient glycoprotein syndrome type I (CDG1) to chromosome 16p, and linkage disequilibrium to microsatellite marker D16S406. Hum Mol Genet. 1994 Nov;3(11):2037–2042. [PubMed] [Google Scholar]
- Matthijs G., Legius E., Schollen E., Vandenberk P., Jaeken J., Barone R., Fiumara A., Visser G., Lambert M., Cassiman J. J. Evidence for genetic heterogeneity in the carbohydrate-deficient glycoprotein syndrome type I (CDG1). Genomics. 1996 Aug 1;35(3):597–599. doi: 10.1006/geno.1996.0404. [DOI] [PubMed] [Google Scholar]
- Matthijs G., Schollen E., Pardon E., Veiga-Da-Cunha M., Jaeken J., Cassiman J. J., Van Schaftingen E. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet. 1997 May;16(1):88–92. doi: 10.1038/ng0597-88. [DOI] [PubMed] [Google Scholar]
- Matthijs G., Schollen E., Pirard M., Budarf M. L., Van Schaftingen E., Cassiman J. J. PMM (PMM1), the human homologue of SEC53 or yeast phosphomannomutase, is localized on chromosome 22q13. Genomics. 1997 Feb 15;40(1):41–47. doi: 10.1006/geno.1996.4536. [DOI] [PubMed] [Google Scholar]
- Matthijs G., Schollen E., Van Schaftingen E., Cassiman J. J., Jaeken J. Lack of homozygotes for the most frequent disease allele in carbohydrate-deficient glycoprotein syndrome type 1A. Am J Hum Genet. 1998 Mar;62(3):542–550. doi: 10.1086/301763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orchard L. M., Kornberg H. L. Sequence similarities between the gene specifying 1-phosphofructokinase (fruK), genes specifying other kinases in Escherichia coli K12, and lacC of Staphylococcus aureus. Proc Biol Sci. 1990 Nov 22;242(1304):87–90. doi: 10.1098/rspb.1990.0108. [DOI] [PubMed] [Google Scholar]
- Pirard M., Collet J. F., Matthijs G., Van Schaftingen E. Comparison of PMM1 with the phosphomannomutases expressed in rat liver and in human cells. FEBS Lett. 1997 Jul 14;411(2-3):251–254. doi: 10.1016/s0014-5793(97)00704-7. [DOI] [PubMed] [Google Scholar]
- Powell L. D., Paneerselvam K., Vij R., Diaz S., Manzi A., Buist N., Freeze H., Varki A. Carbohydrate-deficient glycoprotein syndrome: not an N-linked oligosaccharide processing defect, but an abnormality in lipid-linked oligosaccharide biosynthesis? J Clin Invest. 1994 Nov;94(5):1901–1909. doi: 10.1172/JCI117540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raymondjean M., Kneip B., Schapira G. Preparation and characterization of mRNAs from rat heart muscle. Biochimie. 1983 Jan;65(1):65–70. doi: 10.1016/s0300-9084(83)80030-3. [DOI] [PubMed] [Google Scholar]
- Rose I. A., Warms J. V., Kaklij G. A specific enzyme for glucose 1,6-bisphosphate synthesis. J Biol Chem. 1975 May 10;250(9):3466–3470. [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevens V. L. Biosynthesis of glycosylphosphatidylinositol membrane anchors. Biochem J. 1995 Sep 1;310(Pt 2):361–370. doi: 10.1042/bj3100361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
- Takeda J., Miyata T., Kawagoe K., Iida Y., Endo Y., Fujita T., Takahashi M., Kitani T., Kinoshita T. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell. 1993 May 21;73(4):703–711. doi: 10.1016/0092-8674(93)90250-t. [DOI] [PubMed] [Google Scholar]
- Tejwani G. A. Regulation of fructose-bisphosphatase activity. Adv Enzymol Relat Areas Mol Biol. 1983;54:121–194. doi: 10.1002/9780470122990.ch3. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Schaftingen E., Jaeken J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett. 1995 Dec 27;377(3):318–320. doi: 10.1016/0014-5793(95)01357-1. [DOI] [PubMed] [Google Scholar]
- Veiga-da-Cunha M., Courtois S., Michel A., Gosselain E., Van Schaftingen E. Amino acid conservation in animal glucokinases. Identification of residues implicated in the interaction with the regulatory protein. J Biol Chem. 1996 Mar 15;271(11):6292–6297. doi: 10.1074/jbc.271.11.6292. [DOI] [PubMed] [Google Scholar]
- Wada Y., Sakamoto M. Isolation of the human phosphomannomutase gene (PMM1) and assignment to chromosome 22q13. Genomics. 1997 Feb 1;39(3):416–417. doi: 10.1006/geno.1996.4487. [DOI] [PubMed] [Google Scholar]
- Whitehead T. P., Kricka L. J., Carter T. J., Thorpe G. H. Analytical luminescence: its potential in the clinical laboratory. Clin Chem. 1979 Sep;25(9):1531–1546. [PubMed] [Google Scholar]
- Yamashita K., Ideo H., Ohkura T., Fukushima K., Yuasa I., Ohno K., Takeshita K. Sugar chains of serum transferrin from patients with carbohydrate deficient glycoprotein syndrome. Evidence of asparagine-N-linked oligosaccharide transfer deficiency. J Biol Chem. 1993 Mar 15;268(8):5783–5789. [PubMed] [Google Scholar]