Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 1;339(Pt 1):209–216.

Organization and alternative splicing of the Caenorhabditis elegans cAMP-dependent protein kinase catalytic-subunit gene (kin-1).

M Tabish 1, R A Clegg 1, H H Rees 1, M J Fisher 1
PMCID: PMC1220146  PMID: 10085246

Abstract

The cAMP-dependent protein kinase (protein kinase A, PK-A) is multifunctional in nature, with key roles in the control of diverse aspects of eukaryotic cellular activity. In the case of the free-living nematode, Caenorhabditis elegans, a gene encoding the PK-A catalytic subunit has been identified and two isoforms of this subunit, arising from a C-terminal alternative-splicing event, have been characterized [Gross, Bagchi, Lu and Rubin (1990) J. Biol. Chem. 265, 6896-6907]. Here we report the occurrence of N-terminal alternative-splicing events that, in addition to generating a multiplicity of non-myristoylatable isoforms, also generate the myristoylated variant(s) of the catalytic subunit that we have recently characterized [Aspbury, Fisher, Rees and Clegg (1997) Biochem. Biophys. Res. Commun. 238, 523-527]. The gene spans more than 36 kb and is divided into a total of 13 exons. Each of the mature transcripts contains only 7 exons. In addition to the already characterized exon 1, the 5'-untranslated region and first intron actually contain 5 other exons, any one of which may be alternatively spliced on to exon 2 at the 5' end of the pre-mRNA. This N-terminal alternative splicing occurs in combination with either of the already characterized C-terminal alternative exons. Thus, C. elegans expresses at least 12 different isoforms of the catalytic subunit of PK-A. The significance of this unprecedented structural diversity in the family of PK-A catalytic subunits is discussed.

Full Text

The Full Text of this article is available as a PDF (201.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adie E. J., Thomas P. H., Munday M. R., Clegg R. A. Subcellular targeting of recombinant and mammalian C alpha subunits of cAMP-dependent protein kinase. Biochem Soc Trans. 1995 Aug;23(3):451S–451S. doi: 10.1042/bst023451s. [DOI] [PubMed] [Google Scholar]
  2. Angelo R., Rubin C. S. Molecular characterization of an anchor protein (AKAPCE) that binds the RI subunit (RCE) of type I protein kinase A from Caenorhabditis elegans. J Biol Chem. 1998 Jun 5;273(23):14633–14643. doi: 10.1074/jbc.273.23.14633. [DOI] [PubMed] [Google Scholar]
  3. Aspbury R. A., Fisher M. J., Rees H. H., Clegg R. A. N-Myristoylation of the catalytic subunit of cAMP-dependent protein kinase in the free-living nematode Caenorhabditis elegans. Biochem Biophys Res Commun. 1997 Sep 18;238(2):523–527. doi: 10.1006/bbrc.1997.7165. [DOI] [PubMed] [Google Scholar]
  4. Beushausen S., Lee E., Walker B., Bayley H. Catalytic subunits of Aplysia neuronal cAMP-dependent protein kinase with two different N termini. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1641–1645. doi: 10.1073/pnas.89.5.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boutin J. A. Myristoylation. Cell Signal. 1997 Jan;9(1):15–35. doi: 10.1016/s0898-6568(96)00100-3. [DOI] [PubMed] [Google Scholar]
  6. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carr S. A., Biemann K., Shoji S., Parmelee D. C., Titani K. n-Tetradecanoyl is the NH2-terminal blocking group of the catalytic subunit of cyclic AMP-dependent protein kinase from bovine cardiac muscle. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6128–6131. doi: 10.1073/pnas.79.20.6128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cathala G., Savouret J. F., Mendez B., West B. L., Karin M., Martial J. A., Baxter J. D. A method for isolation of intact, translationally active ribonucleic acid. DNA. 1983;2(4):329–335. doi: 10.1089/dna.1983.2.329. [DOI] [PubMed] [Google Scholar]
  9. Chestukhin A., Litovchick L., Muradov K., Batkin M., Shaltiel S. Unveiling the substrate specificity of meprin beta on the basis of the site in protein kinase A cleaved by the kinase splitting membranal proteinase. J Biol Chem. 1997 Feb 7;272(6):3153–3160. doi: 10.1074/jbc.272.6.3153. [DOI] [PubMed] [Google Scholar]
  10. Conrad R., Thomas J., Spieth J., Blumenthal T. Insertion of part of an intron into the 5' untranslated region of a Caenorhabditis elegans gene converts it into a trans-spliced gene. Mol Cell Biol. 1991 Apr;11(4):1921–1926. doi: 10.1128/mcb.11.4.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dammann H., Traincard F., Anjard C., van Bemmelen M. X., Reymond C., Véron M. Functional analysis of the catalytic subunit of Dictyostelium PKA in vivo. Mech Dev. 1998 Mar;72(1-2):149–157. doi: 10.1016/s0925-4773(98)00025-2. [DOI] [PubMed] [Google Scholar]
  12. Etchebehere L. C., Van Bemmelen M. X., Anjard C., Traincard F., Assemat K., Reymond C., Véron M. The catalytic subunit of Dictyostelium cAMP-dependent protein kinase -- role of the N-terminal domain and of the C-terminal residues in catalytic activity and stability. Eur J Biochem. 1997 Sep 15;248(3):820–826. doi: 10.1111/j.1432-1033.1997.t01-2-00820.x. [DOI] [PubMed] [Google Scholar]
  13. Faux M. C., Scott J. D. Molecular glue: kinase anchoring and scaffold proteins. Cell. 1996 Apr 5;85(1):9–12. doi: 10.1016/s0092-8674(00)81075-2. [DOI] [PubMed] [Google Scholar]
  14. Foster J. L., Higgins G. C., Jackson F. R. Cloning, sequence, and expression of the Drosophila cAMP-dependent protein kinase catalytic subunit gene. J Biol Chem. 1988 Feb 5;263(4):1676–1681. [PubMed] [Google Scholar]
  15. Gardner R. A., Travers M. T., Barber M. C., Miller W. R., Clegg R. A. Expression of PK-A catalytic subunit in mammary tissue during pregnancy and lactation. Biochem Soc Trans. 1993 Nov;21(4):398S–398S. doi: 10.1042/bst021398s. [DOI] [PubMed] [Google Scholar]
  16. Gross R. E., Bagchi S., Lu X., Rubin C. S. Cloning, characterization, and expression of the gene for the catalytic subunit of cAMP-dependent protein kinase in Caenorhabditis elegans. Identification of highly conserved and unique isoforms generated by alternative splicing. J Biol Chem. 1990 Apr 25;265(12):6896–6907. [PubMed] [Google Scholar]
  17. Hawdon J. M., Jones B. F., Hotez P. J. Cloning and characterization of a cDNA encoding the catalytic subunit of a cAMP-dependent protein kinase from Ancylostoma caninum third-stage infective larvae. Mol Biochem Parasitol. 1995 Jan;69(1):127–130. doi: 10.1016/0166-6851(94)00203-y. [DOI] [PubMed] [Google Scholar]
  18. Herberg F. W., Zimmermann B., McGlone M., Taylor S. S. Importance of the A-helix of the catalytic subunit of cAMP-dependent protein kinase for stability and for orienting subdomains at the cleft interface. Protein Sci. 1997 Mar;6(3):569–579. doi: 10.1002/pro.5560060306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jung S., Hoffmann R., Rodriguez P. H., Mutzel R., Hofer H. W. The catalytic subunit of cAMP-dependent protein kinase from Ascaris suum. The cloning and structure of a novel subtype of protein kinase A. Eur J Biochem. 1995 Aug 15;232(1):111–117. doi: 10.1111/j.1432-1033.1995.tb20788.x. [DOI] [PubMed] [Google Scholar]
  20. Panchal R. G., Cheley S., Bayley H. Differential phosphorylation of neuronal substrates by catalytic subunits of Aplysia cAMP-dependent protein kinase with alternative N termini. J Biol Chem. 1994 Sep 23;269(38):23722–23730. [PubMed] [Google Scholar]
  21. San Agustin J. T., Leszyk J. D., Nuwaysir L. M., Witman G. B. The catalytic subunit of the cAMP-dependent protein kinase of ovine sperm flagella has a unique amino-terminal sequence. J Biol Chem. 1998 Sep 18;273(38):24874–24883. doi: 10.1074/jbc.273.38.24874. [DOI] [PubMed] [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Varkey J. P., Muhlrad P. J., Minniti A. N., Do B., Ward S. The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin. Genes Dev. 1995 May 1;9(9):1074–1086. doi: 10.1101/gad.9.9.1074. [DOI] [PubMed] [Google Scholar]
  24. Veron M., Radzio-Andzelm E., Tsigelny I., Ten Eyck L. F., Taylor S. S. A conserved helix motif complements the protein kinase core. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10618–10622. doi: 10.1073/pnas.90.22.10618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]
  26. Zheng J., Knighton D. R., Xuong N. H., Taylor S. S., Sowadski J. M., Ten Eyck L. F. Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. Protein Sci. 1993 Oct;2(10):1559–1573. doi: 10.1002/pro.5560021003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES