Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 15;339(Pt 2):217–221.

Regions 301-303 and 333-339 in the catalytic domain of blood coagulation factor IX are factor VIII-interactive sites involved in stimulation of enzyme activity.

J A Kolkman 1, P J Lenting 1, K Mertens 1
PMCID: PMC1220147  PMID: 10191249

Abstract

The contribution of the Factor IX catalytic domain to Factor VIIIa binding has been evaluated by functional analysis of Factor IX variants with substitutions in alpha-helix region 333-339 and region 301-303. These regions were found to play a prominent role in Factor VIIIa-dependent stimulation of Factor X activation, but do not contribute to the high-affinity interaction with Factor VIIIa light chain. We propose that complex assembly between Factor IXa and Factor VIIIa involves multiple interactive sites that are located on different domains of these proteins.

Full Text

The Full Text of this article is available as a PDF (184.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajaj S. P., Rapaport S. I., Maki S. L. A monoclonal antibody to factor IX that inhibits the factor VIII:Ca potentiation of factor X activation. J Biol Chem. 1985 Sep 25;260(21):11574–11580. [PubMed] [Google Scholar]
  2. Banner D. W., D'Arcy A., Chène C., Winkler F. K., Guha A., Konigsberg W. H., Nemerson Y., Kirchhofer D. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature. 1996 Mar 7;380(6569):41–46. doi: 10.1038/380041a0. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Brandstetter H., Mather T., Stubbs M. T. Comparative analysis of haemostatic proteinases: structural aspects of thrombin, factor Xa, factor IXa and protein C. Thromb Haemost. 1997 Jul;78(1):501–511. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Brandstetter H., Bauer M., Huber R., Lollar P., Bode W. X-ray structure of clotting factor IXa: active site and module structure related to Xase activity and hemophilia B. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9796–9800. doi: 10.1073/pnas.92.21.9796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang J., Jin J., Lollar P., Bode W., Brandstetter H., Hamaguchi N., Straight D. L., Stafford D. W. Changing residue 338 in human factor IX from arginine to alanine causes an increase in catalytic activity. J Biol Chem. 1998 May 15;273(20):12089–12094. doi: 10.1074/jbc.273.20.12089. [DOI] [PubMed] [Google Scholar]
  7. Christophe O. D., Lenting P. J., Kolkman J. A., Brownlee G. G., Mertens K. Blood coagulation factor IX residues Glu78 and Arg94 provide a link between both epidermal growth factor-like domains that is crucial in the interaction with factor VIII light chain. J Biol Chem. 1998 Jan 2;273(1):222–227. doi: 10.1074/jbc.273.1.222. [DOI] [PubMed] [Google Scholar]
  8. Edgington T. S., Dickinson C. D., Ruf W. The structural basis of function of the TF. VIIa complex in the cellular initiation of coagulation. Thromb Haemost. 1997 Jul;78(1):401–405. [PubMed] [Google Scholar]
  9. Fay P. J., Beattie T., Huggins C. F., Regan L. M. Factor VIIIa A2 subunit residues 558-565 represent a factor IXa interactive site. J Biol Chem. 1994 Aug 12;269(32):20522–20527. [PubMed] [Google Scholar]
  10. Fay P. J., Koshibu K. The A2 subunit of factor VIIIa modulates the active site of factor IXa. J Biol Chem. 1998 Jul 24;273(30):19049–19054. doi: 10.1074/jbc.273.30.19049. [DOI] [PubMed] [Google Scholar]
  11. Furie B., Furie B. C. The molecular basis of blood coagulation. Cell. 1988 May 20;53(4):505–518. doi: 10.1016/0092-8674(88)90567-3. [DOI] [PubMed] [Google Scholar]
  12. Giannelli F., Green P. M., Sommer S. S., Poon M., Ludwig M., Schwaab R., Reitsma P. H., Goossens M., Yoshioka A., Figueiredo M. S. Haemophilia B: database of point mutations and short additions and deletions--eighth edition. Nucleic Acids Res. 1998 Jan 1;26(1):265–268. doi: 10.1093/nar/26.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lenting P. J., Christophe O. D., Maat H., Rees D. J., Mertens K. Ca2+ binding to the first epidermal growth factor-like domain of human blood coagulation factor IX promotes enzyme activity and factor VIII light chain binding. J Biol Chem. 1996 Oct 11;271(41):25332–25337. doi: 10.1074/jbc.271.41.25332. [DOI] [PubMed] [Google Scholar]
  14. Lenting P. J., Donath M. J., van Mourik J. A., Mertens K. Identification of a binding site for blood coagulation factor IXa on the light chain of human factor VIII. J Biol Chem. 1994 Mar 11;269(10):7150–7155. [PubMed] [Google Scholar]
  15. Lenting P. J., ter Maat H., Clijsters P. P., Donath M. J., van Mourik J. A., Mertens K. Cleavage at arginine 145 in human blood coagulation factor IX converts the zymogen into a factor VIII binding enzyme. J Biol Chem. 1995 Jun 23;270(25):14884–14890. doi: 10.1074/jbc.270.25.14884. [DOI] [PubMed] [Google Scholar]
  16. Lenting P. J., van Mourik J. A., Mertens K. The life cycle of coagulation factor VIII in view of its structure and function. Blood. 1998 Dec 1;92(11):3983–3996. [PubMed] [Google Scholar]
  17. Lenting P. J., van de Loo J. W., Donath M. J., van Mourik J. A., Mertens K. The sequence Glu1811-Lys1818 of human blood coagulation factor VIII comprises a binding site for activated factor IX. J Biol Chem. 1996 Jan 26;271(4):1935–1940. doi: 10.1074/jbc.271.4.1935. [DOI] [PubMed] [Google Scholar]
  18. Mann K. G., Nesheim M. E., Church W. R., Haley P., Krishnaswamy S. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood. 1990 Jul 1;76(1):1–16. [PubMed] [Google Scholar]
  19. Mertens K., Cupers R., Van Wijngaarden A., Bertina R. M. Binding of human blood-coagulation Factors IXa and X to phospholipid membranes. Biochem J. 1984 Nov 1;223(3):599–605. doi: 10.1042/bj2230599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. O'Brien L. M., Medved L. V., Fay P. J. Localization of factor IXa and factor VIIIa interactive sites. J Biol Chem. 1995 Nov 10;270(45):27087–27092. doi: 10.1074/jbc.270.45.27087. [DOI] [PubMed] [Google Scholar]
  21. Pemberton S., Lindley P., Zaitsev V., Card G., Tuddenham E. G., Kemball-Cook G. A molecular model for the triplicated A domains of human factor VIII based on the crystal structure of human ceruloplasmin. Blood. 1997 Apr 1;89(7):2413–2421. [PubMed] [Google Scholar]
  22. Rees D. J., Jones I. M., Handford P. A., Walter S. J., Esnouf M. P., Smith K. J., Brownlee G. G. The role of beta-hydroxyaspartate and adjacent carboxylate residues in the first EGF domain of human factor IX. EMBO J. 1988 Jul;7(7):2053–2061. doi: 10.1002/j.1460-2075.1988.tb03045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sarkar G., Koeberl D. D., Sommer S. S. Direct sequencing of the activation peptide and the catalytic domain of the factor IX gene in six species. Genomics. 1990 Jan;6(1):133–143. doi: 10.1016/0888-7543(90)90458-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES