Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 15;339(Pt 2):223–226.

Identification of the Mg2+-binding site in the P-type ATPase and phosphatase members of the HAD (haloacid dehalogenase) superfamily by structural similarity to the response regulator protein CheY.

I S Ridder 1, B W Dijkstra 1
PMCID: PMC1220148  PMID: 10191250

Abstract

The large HAD (haloacid dehalogenase) superfamily of hydrolases comprises P-type ATPases, phosphatases, epoxide hydrolases and L-2-haloacid dehalogenases. A comparison of the three-dimensional structure of L-2-haloacid dehalogenase with that of the response regulator protein CheY allowed the assignment of a conserved pair of aspartate residues as the Mg2+-binding site in the P-type ATPase and phosphatase members of the superfamily. From the resulting model of the active site, a conserved serine/threonine residue is suggested to be involved in phosphate binding, and a mechanism comprising a phosphoaspartate intermediate is postulated.

Full Text

The Full Text of this article is available as a PDF (180.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aravind L., Galperin M. Y., Koonin E. V. The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. Trends Biochem Sci. 1998 Apr;23(4):127–129. doi: 10.1016/s0968-0004(98)01189-x. [DOI] [PubMed] [Google Scholar]
  2. Asano S., Tega Y., Konishi K., Fujioka M., Takeguchi N. Functional expression of gastric H+,K(+)-ATPase and site-directed mutagenesis of the putative cation binding site and catalytic center. J Biol Chem. 1996 Feb 2;271(5):2740–2745. doi: 10.1074/jbc.271.5.2740. [DOI] [PubMed] [Google Scholar]
  3. Auer M., Scarborough G. A., Kühlbrandt W. Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature. 1998 Apr 23;392(6678):840–843. doi: 10.1038/33967. [DOI] [PubMed] [Google Scholar]
  4. Bellsolell L., Prieto J., Serrano L., Coll M. Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational changes involving its functional surface. J Mol Biol. 1994 May 13;238(4):489–495. doi: 10.1006/jmbi.1994.1308. [DOI] [PubMed] [Google Scholar]
  5. Collet J. F., Gerin I., Rider M. H., Veiga-da-Cunha M., Van Schaftingen E. Human L-3-phosphoserine phosphatase: sequence, expression and evidence for a phosphoenzyme intermediate. FEBS Lett. 1997 May 26;408(3):281–284. doi: 10.1016/s0014-5793(97)00438-9. [DOI] [PubMed] [Google Scholar]
  6. Collet J. F., Stroobant V., Pirard M., Delpierre G., Van Schaftingen E. A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J Biol Chem. 1998 Jun 5;273(23):14107–14112. doi: 10.1074/jbc.273.23.14107. [DOI] [PubMed] [Google Scholar]
  7. Dahms A. S., Kanazawa T., Boyer P. D. Source of the oxygen in the C-O-P linkage of the acyl phosphate in transport adenosine triphosphatases. J Biol Chem. 1973 Oct 10;248(19):6592–6595. [PubMed] [Google Scholar]
  8. Emsley J., King S. L., Bergelson J. M., Liddington R. C. Crystal structure of the I domain from integrin alpha2beta1. J Biol Chem. 1997 Nov 7;272(45):28512–28517. doi: 10.1074/jbc.272.45.28512. [DOI] [PubMed] [Google Scholar]
  9. Guha S. K., Rose Z. B. The synthesis of mannose 1-phosphate in brain. Arch Biochem Biophys. 1985 Nov 15;243(1):168–173. doi: 10.1016/0003-9861(85)90785-4. [DOI] [PubMed] [Google Scholar]
  10. Hisano T., Hata Y., Fujii T., Liu J. Q., Kurihara T., Esaki N., Soda K. Crystal structure of L-2-haloacid dehalogenase from Pseudomonas sp. YL. An alpha/beta hydrolase structure that is different from the alpha/beta hydrolase fold. J Biol Chem. 1996 Aug 23;271(34):20322–20330. doi: 10.1074/jbc.271.34.20322. [DOI] [PubMed] [Google Scholar]
  11. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  12. Koonin E. V., Tatusov R. L. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. J Mol Biol. 1994 Nov 18;244(1):125–132. doi: 10.1006/jmbi.1994.1711. [DOI] [PubMed] [Google Scholar]
  13. Kurihara T., Liu J. Q., Nardi-Dei V., Koshikawa H., Esaki N., Soda K. Comprehensive site-directed mutagenesis of L-2-halo acid dehalogenase to probe catalytic amino acid residues. J Biochem. 1995 Jun;117(6):1317–1322. doi: 10.1093/oxfordjournals.jbchem.a124861. [DOI] [PubMed] [Google Scholar]
  14. Lee J. O., Rieu P., Arnaout M. A., Liddington R. Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell. 1995 Feb 24;80(4):631–638. doi: 10.1016/0092-8674(95)90517-0. [DOI] [PubMed] [Google Scholar]
  15. Liu J. Q., Kurihara T., Miyagi M., Esaki N., Soda K. Reaction mechanism of L-2-haloacid dehalogenase of Pseudomonas sp. YL. Identification of Asp10 as the active site nucleophile by 18O incorporation experiments. J Biol Chem. 1995 Aug 4;270(31):18309–18312. [PubMed] [Google Scholar]
  16. Liu J. Q., Kurihara T., Miyagi M., Tsunasawa S., Nishihara M., Esaki N., Soda K. Paracatalytic inactivation of L-2-haloacid dehalogenase from Pseudomonas sp. YL by hydroxylamine. Evidence for the formation of an ester intermediate. J Biol Chem. 1997 Feb 7;272(6):3363–3368. doi: 10.1074/jbc.272.6.3363. [DOI] [PubMed] [Google Scholar]
  17. Lutsenko S., Kaplan J. H. Organization of P-type ATPases: significance of structural diversity. Biochemistry. 1995 Dec 5;34(48):15607–15613. doi: 10.1021/bi00048a001. [DOI] [PubMed] [Google Scholar]
  18. MacGregor E. A., Jespersen H. M., Svensson B. A circularly permuted alpha-amylase-type alpha/beta-barrel structure in glucan-synthesizing glucosyltransferases. FEBS Lett. 1996 Jan 15;378(3):263–266. doi: 10.1016/0014-5793(95)01428-4. [DOI] [PubMed] [Google Scholar]
  19. Munson K. B., Gutierrez C., Balaji V. N., Ramnarayan K., Sachs G. Identification of an extracytoplasmic region of H+,K(+)-ATPase labeled by a K(+)-competitive photoaffinity inhibitor. J Biol Chem. 1991 Oct 5;266(28):18976–18988. [PubMed] [Google Scholar]
  20. Møller J. V., Juul B., le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996 May 6;1286(1):1–51. doi: 10.1016/0304-4157(95)00017-8. [DOI] [PubMed] [Google Scholar]
  21. Norman E. G., Colman B. Purification and Characterization of Phosphoglycolate Phosphatase from the Cyanobacterium Coccochloris peniocystis. Plant Physiol. 1991 Mar;95(3):693–698. doi: 10.1104/pp.95.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pai E. F., Krengel U., Petsko G. A., Goody R. S., Kabsch W., Wittinghofer A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990 Aug;9(8):2351–2359. doi: 10.1002/j.1460-2075.1990.tb07409.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ridder I. S., Rozeboom H. J., Kalk K. H., Janssen D. B., Dijkstra B. W. Three-dimensional structure of L-2-haloacid dehalogenase from Xanthobacter autotrophicus GJ10 complexed with the substrate-analogue formate. J Biol Chem. 1997 Dec 26;272(52):33015–33022. doi: 10.1074/jbc.272.52.33015. [DOI] [PubMed] [Google Scholar]
  24. SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
  25. Schimming S., Schwarz W. H., Staudenbauer W. L. Structure of the Clostridium thermocellum gene licB and the encoded beta-1,3-1,4-glucanase. A catalytic region homologous to Bacillus lichenases joined to the reiterated domain of clostridial cellulases. Eur J Biochem. 1992 Feb 15;204(1):13–19. doi: 10.1111/j.1432-1033.1992.tb16600.x. [DOI] [PubMed] [Google Scholar]
  26. Shigekawa M., Wakabayashi S., Nakamura H. Effect of divalent cation bound to the ATPase of sarcoplasmic reticulum. Activation of phosphoenzyme hydrolysis by Mg2+. J Biol Chem. 1983 Dec 10;258(23):14157–14161. [PubMed] [Google Scholar]
  27. Shirakihara Y., Evans P. R. Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J Mol Biol. 1988 Dec 20;204(4):973–994. doi: 10.1016/0022-2836(88)90056-3. [DOI] [PubMed] [Google Scholar]
  28. Stock A. M., Martinez-Hackert E., Rasmussen B. F., West A. H., Stock J. B., Ringe D., Petsko G. A. Structure of the Mg(2+)-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry. 1993 Dec 14;32(49):13375–13380. doi: 10.1021/bi00212a001. [DOI] [PubMed] [Google Scholar]
  29. Stock A. M., Mowbray S. L. Bacterial chemotaxis: a field in motion. Curr Opin Struct Biol. 1995 Dec;5(6):744–751. doi: 10.1016/0959-440x(95)80006-9. [DOI] [PubMed] [Google Scholar]
  30. Vandercammen A., François J., Hers H. G. Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase of Saccharomyces cerevisiae. Eur J Biochem. 1989 Jul 1;182(3):613–620. doi: 10.1111/j.1432-1033.1989.tb14870.x. [DOI] [PubMed] [Google Scholar]
  31. Volz K. Structural conservation in the CheY superfamily. Biochemistry. 1993 Nov 9;32(44):11741–11753. doi: 10.1021/bi00095a001. [DOI] [PubMed] [Google Scholar]
  32. Wakabayashi S., Shigekawa M. Effect of metal bound to the substrate site on calcium release from the phosphoenzyme intermediate of sarcoplasmic reticulum ATPase. J Biol Chem. 1987 Aug 25;262(24):11524–11531. [PubMed] [Google Scholar]
  33. Zhang P., Toyoshima C., Yonekura K., Green N. M., Stokes D. L. Structure of the calcium pump from sarcoplasmic reticulum at 8-A resolution. Nature. 1998 Apr 23;392(6678):835–839. doi: 10.1038/33959. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES