Abstract
Expression of the fructose transporter GLUT5 in Caco-2 cells is controlled by the carbohydrate content of the culture media [Mesonero, Matosin, Cambier, Rodriguez-Yoldi and Brot-Laroche (1995) Biochem. J. 312, 757-762] and by the metabolic status of the cells [Mahraoui, Takeda, Mesonero, Chantret, Dussaulx, Bell, and Brot-Laroche (1994) Biochem. J. 301, 169-175]. In this study we show that, in fully differentiated Caco-2/TC7 cells, thyroid hormone and glucose increase GLUT5 mRNA abundance in a dose-dependent manner. Using Caco-2/TC7 cells stably transformed with various fragments of the GLUT5 promoter inserted upstream of the luciferase reporter gene, we localized the sequences that confer 3,3',5-l-tri-iodothyronine (T3)- and/or glucose-sensitivity to the gene. Glucose responsiveness is conferred by the -272/+41 fragment of the promoter, but it is only with the -338/+41 region that transcription of the luciferase reporter gene is stimulated by T3. This 70 bp fragment from position -338 to -272 of the GLUT5 gene is able to confer T3/glucose-responsiveness to the heterologous thymidine kinase promoter. Electrophoretic-mobility-shift assays demonstrate that thyroid hormone receptors alpha and beta are expressed in Caco-2/TC7 cells. They further show that the -308/-290 region of the GLUT5 promoter binds thyroid hormone receptor/retinoid X receptor heterodimers, and that glucose and/or T3 exert a deleterious effect on the binding of the nuclear protein complex.
Full Text
The Full Text of this article is available as a PDF (212.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhat M. K., Yu C. l., Yap N., Zhan Q., Hayashi Y., Seth P., Cheng S. Tumor suppressor p53 is a negative regulator in thyroid hormone receptor signaling pathways. J Biol Chem. 1997 Nov 14;272(46):28989–28993. doi: 10.1074/jbc.272.46.28989. [DOI] [PubMed] [Google Scholar]
- Brent G. A. The molecular basis of thyroid hormone action. N Engl J Med. 1994 Sep 29;331(13):847–853. doi: 10.1056/NEJM199409293311306. [DOI] [PubMed] [Google Scholar]
- Burant C. F., Saxena M. Rapid reversible substrate regulation of fructose transporter expression in rat small intestine and kidney. Am J Physiol. 1994 Jul;267(1 Pt 1):G71–G79. doi: 10.1152/ajpgi.1994.267.1.G71. [DOI] [PubMed] [Google Scholar]
- Casla A., Rovira A., Wells J. A., Dohm G. L. Increased glucose transporter (GLUT4) protein expression in hyperthyroidism. Biochem Biophys Res Commun. 1990 Aug 31;171(1):182–188. doi: 10.1016/0006-291x(90)91374-2. [DOI] [PubMed] [Google Scholar]
- Castelló A., Gumá A., Sevilla L., Furriols M., Testar X., Palacín M., Zorzano A. Regulation of GLUT5 gene expression in rat intestinal mucosa: regional distribution, circadian rhythm, perinatal development and effect of diabetes. Biochem J. 1995 Jul 1;309(Pt 1):271–277. doi: 10.1042/bj3090271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chantret I., Rodolosse A., Barbat A., Dussaulx E., Brot-Laroche E., Zweibaum A., Rousset M. Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation. J Cell Sci. 1994 Jan;107(Pt 1):213–225. doi: 10.1242/jcs.107.1.213. [DOI] [PubMed] [Google Scholar]
- Chen J. D., Evans R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995 Oct 5;377(6548):454–457. doi: 10.1038/377454a0. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Corpe C. P., Basaleh M. M., Affleck J., Gould G., Jess T. J., Kellett G. L. The regulation of GLUT5 and GLUT2 activity in the adaptation of intestinal brush-border fructose transport in diabetes. Pflugers Arch. 1996 Jun;432(2):192–201. doi: 10.1007/s004240050124. [DOI] [PubMed] [Google Scholar]
- Davidson N. O., Hausman A. M., Ifkovits C. A., Buse J. B., Gould G. W., Burant C. F., Bell G. I. Human intestinal glucose transporter expression and localization of GLUT5. Am J Physiol. 1992 Mar;262(3 Pt 1):C795–C800. doi: 10.1152/ajpcell.1992.262.3.C795. [DOI] [PubMed] [Google Scholar]
- Delie F., Rubas W. A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model. Crit Rev Ther Drug Carrier Syst. 1997;14(3):221–286. [PubMed] [Google Scholar]
- Ferraris R. P., Diamond J. M. Specific regulation of intestinal nutrient transporters by their dietary substrates. Annu Rev Physiol. 1989;51:125–141. doi: 10.1146/annurev.ph.51.030189.001013. [DOI] [PubMed] [Google Scholar]
- Ferraris R. P., Diamond J. Crypt-villus site of glucose transporter induction by dietary carbohydrate in mouse intestine. Am J Physiol. 1992 Jun;262(6 Pt 1):G1069–G1073. doi: 10.1152/ajpgi.1992.262.6.G1069. [DOI] [PubMed] [Google Scholar]
- Ferraris R. P., Villenas S. A., Hirayama B. A., Diamond J. Effect of diet on glucose transporter site density along the intestinal crypt-villus axis. Am J Physiol. 1992 Jun;262(6 Pt 1):G1060–G1068. doi: 10.1152/ajpgi.1992.262.6.G1060. [DOI] [PubMed] [Google Scholar]
- Giannella R. A., Orlowski J., Jump M. L., Lingrel J. B. Na(+)-K(+)-ATPase gene expression in rat intestine and Caco-2 cells: response to thyroid hormone. Am J Physiol. 1993 Oct;265(4 Pt 1):G775–G782. doi: 10.1152/ajpgi.1993.265.4.G775. [DOI] [PubMed] [Google Scholar]
- Green F., Edwards Y., Hauri H. P., Povey S., Ho M. W., Pinto M., Swallow D. Isolation of a cDNA probe for a human jejunal brush-border hydrolase, sucrase-isomaltase, and assignment of the gene locus to chromosome 3. Gene. 1987;57(1):101–110. doi: 10.1016/0378-1119(87)90181-8. [DOI] [PubMed] [Google Scholar]
- Hörlein A. J., När A. M., Heinzel T., Torchia J., Gloss B., Kurokawa R., Ryan A., Kamei Y., Söderström M., Glass C. K. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995 Oct 5;377(6548):397–404. doi: 10.1038/377397a0. [DOI] [PubMed] [Google Scholar]
- Kayano T., Burant C. F., Fukumoto H., Gould G. W., Fan Y. S., Eddy R. L., Byers M. G., Shows T. B., Seino S., Bell G. I. Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J Biol Chem. 1990 Aug 5;265(22):13276–13282. [PubMed] [Google Scholar]
- Kuruvilla A. K., Perez C., Ismail-Beigi F., Loeb J. N. Regulation of glucose transport in Clone 9 cells by thyroid hormone. Biochim Biophys Acta. 1991 Sep 24;1094(3):300–308. doi: 10.1016/0167-4889(91)90090-k. [DOI] [PubMed] [Google Scholar]
- Lazar M. A. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev. 1993 Apr;14(2):184–193. doi: 10.1210/edrv-14-2-184. [DOI] [PubMed] [Google Scholar]
- Legros Y., Lafon C., Soussi T. Linear antigenic sites defined by the B-cell response to human p53 are localized predominantly in the amino and carboxy-termini of the protein. Oncogene. 1994 Jul;9(7):2071–2076. [PubMed] [Google Scholar]
- Liu H. C., Towle H. C. Functional synergism between multiple thyroid hormone response elements regulates hepatic expression of the rat S14 gene. Mol Endocrinol. 1994 Aug;8(8):1021–1037. doi: 10.1210/mend.8.8.7997231. [DOI] [PubMed] [Google Scholar]
- Mahraoui L., Rodolosse A., Barbat A., Dussaulx E., Zweibaum A., Rousset M., Brot-Laroche E. Presence and differential expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose-transporter mRNAs in Caco-2 cell clones in relation to cell growth and glucose consumption. Biochem J. 1994 Mar 15;298(Pt 3):629–633. doi: 10.1042/bj2980629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahraoui L., Rousset M., Dussaulx E., Darmoul D., Zweibaum A., Brot-Laroche E. Expression and localization of GLUT-5 in Caco-2 cells, human small intestine, and colon. Am J Physiol. 1992 Sep;263(3 Pt 1):G312–G318. doi: 10.1152/ajpgi.1992.263.3.G312. [DOI] [PubMed] [Google Scholar]
- Mahraoui L., Takeda J., Mesonero J., Chantret I., Dussaulx E., Bell G. I., Brot-Laroche E. Regulation of expression of the human fructose transporter (GLUT5) by cyclic AMP. Biochem J. 1994 Jul 1;301(Pt 1):169–175. doi: 10.1042/bj3010169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matosin-Matekalo M., Mesonero J. E., Delezay O., Poiree J. C., Ilundain A. A., Brot-Laroche E. Thyroid hormone regulation of the Na+/glucose cotransporter SGLT1 in Caco-2 cells. Biochem J. 1998 Sep 15;334(Pt 3):633–640. doi: 10.1042/bj3340633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mesonero J., Matosin M., Cambier D., Rodriguez-Yoldi M. J., Brot-Laroche E. Sugar-dependent expression of the fructose transporter GLUT5 in Caco-2 cells. Biochem J. 1995 Dec 15;312(Pt 3):757–762. doi: 10.1042/bj3120757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pringault E., Arpin M., Garcia A., Finidori J., Louvard D. A human villin cDNA clone to investigate the differentiation of intestinal and kidney cells in vivo and in culture. EMBO J. 1986 Dec 1;5(12):3119–3124. doi: 10.1002/j.1460-2075.1986.tb04618.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodolosse A., Barbat A., Chantret I., Lacasa M., Brot-Laroche E., Zweibaum A., Rousset M. Selecting agent hygromycin B alters expression of glucose-regulated genes in transfected Caco-2 cells. Am J Physiol. 1998 May;274(5 Pt 1):G931–G938. doi: 10.1152/ajpgi.1998.274.5.G931. [DOI] [PubMed] [Google Scholar]
- Rodolosse A., Chantret I., Lacasa M., Chevalier G., Zweibaum A., Swallow D., Rousset M. A limited upstream region of the human sucrase-isomaltase gene confers glucose-regulated expression on a heterologous gene. Biochem J. 1996 Apr 1;315(Pt 1):301–306. doi: 10.1042/bj3150301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro D. J., Sharp P. A., Wahli W. W., Keller M. J. A high-efficiency HeLa cell nuclear transcription extract. DNA. 1988 Jan-Feb;7(1):47–55. doi: 10.1089/dna.1988.7.47. [DOI] [PubMed] [Google Scholar]
- Stary A., James M. R., Sarasin A. High recombination rate of an Epstein-Barr virus-simian virus 40 hybrid shuttle vector in human cells. J Virol. 1989 Sep;63(9):3837–3843. doi: 10.1128/jvi.63.9.3837-3843.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towle H. C., Kaytor E. N., Shih H. M. Regulation of the expression of lipogenic enzyme genes by carbohydrate. Annu Rev Nutr. 1997;17:405–433. doi: 10.1146/annurev.nutr.17.1.405. [DOI] [PubMed] [Google Scholar]
- Trotot P., Mechali F., Blangy D., Lacasa M. Transcriptional activity in 3T3, F9, and PCC4 embryonal carcinoma cells: a systematic deletion and linker-scanning study of the polyomavirus enhancer. Virology. 1994 Aug 1;202(2):724–734. doi: 10.1006/viro.1994.1394. [DOI] [PubMed] [Google Scholar]
- Ulisse S., Jannini E. A., Pepe M., De Matteis S., D'Armiento M. Thyroid hormone stimulates glucose transport and GLUT1 mRNA in rat Sertoli cells. Mol Cell Endocrinol. 1992 Sep;87(1-3):131–137. doi: 10.1016/0303-7207(92)90241-w. [DOI] [PubMed] [Google Scholar]
- Weinstein S. P., O'Boyle E., Fisher M., Haber R. S. Regulation of GLUT2 glucose transporter expression in liver by thyroid hormone: evidence for hormonal regulation of the hepatic glucose transport system. Endocrinology. 1994 Aug;135(2):649–654. doi: 10.1210/endo.135.2.8033812. [DOI] [PubMed] [Google Scholar]
- Weinstein S. P., Watts J., Graves P. N., Haber R. S. Stimulation of glucose transport by thyroid hormone in ARL 15 cells: increased abundance of glucose transporter protein and messenger ribonucleic acid. Endocrinology. 1990 Mar;126(3):1421–1429. doi: 10.1210/endo-126-3-1421. [DOI] [PubMed] [Google Scholar]
- Wu G. D., Chen L., Forslund K., Traber P. G. Hepatocyte nuclear factor-1 alpha (HNF-1 alpha) and HNF-1 beta regulate transcription via two elements in an intestine-specific promoter. J Biol Chem. 1994 Jun 24;269(25):17080–17085. [PubMed] [Google Scholar]
- Zhang J., Zamir I., Lazar M. A. Differential recognition of liganded and unliganded thyroid hormone receptor by retinoid X receptor regulates transcriptional repression. Mol Cell Biol. 1997 Dec;17(12):6887–6897. doi: 10.1128/mcb.17.12.6887. [DOI] [PMC free article] [PubMed] [Google Scholar]
