Abstract
The biogenesis of connexins and their assembly into functional gap junction hemichannels (connexons) was studied with the use of a cell-free transcription/translation system. Velocity sedimentation on sucrose gradients showed that a small proportion of connexin (Cx) 26 and Cx32 that were co-translationally translocated into microsomes were oligomers of Cx26 and Cx32. Chemical cross-linking studies showed that these corresponded to hexameric connexons. Reconstitution of connexons synthesized in vitro into liposomes induced permeability properties consistent with the view that open gap junction hemichannels were produced. By using an immunoprecipitation approach, a simultaneous translation of Cx26 and Cx32 incorporated into microsomes resulted in homomeric connexons. However, supplementation of the translation system in vitro with liver Golgi membranes produced heteromeric connexons constructed of Cx32 and Cx26, and also resulted in an increased oligomerization especially of Cx32. All of the connexins analysed were inserted co-translationally into canine pancreatic microsomal membranes. In addition, Cx26 and Cx43, but not Cx32, were also inserted into microsomal membranes post-translationally. Analysis of various connexin constructs in which the cytoplasmic carboxy tails were transposed, the cytoplasmic tail of Cx43 was truncated or a reporter protein, aequorin, was attached to the C-terminus showed that tail length was not the major determinant of the post-translational membrane insertion of connexins.
Full Text
The Full Text of this article is available as a PDF (213.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bevans C. G., Kordel M., Rhee S. K., Harris A. L. Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem. 1998 Jan 30;273(5):2808–2816. doi: 10.1074/jbc.273.5.2808. [DOI] [PubMed] [Google Scholar]
 - Bruzzone R., White T. W., Paul D. L. Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem. 1996 May 15;238(1):1–27. doi: 10.1111/j.1432-1033.1996.0001q.x. [DOI] [PubMed] [Google Scholar]
 - Carter T. D., Chen X. Y., Carlile G., Kalapothakis E., Ogden D., Evans W. H. Porcine aortic endothelial gap junctions: identification and permeation by caged InsP3. J Cell Sci. 1996 Jul;109(Pt 7):1765–1773. doi: 10.1242/jcs.109.7.1765. [DOI] [PubMed] [Google Scholar]
 - Cascio M., Kumar N. M., Safarik R., Gilula N. B. Physical characterization of gap junction membrane connexons (hemi-channels) isolated from rat liver. J Biol Chem. 1995 Aug 4;270(31):18643–18648. doi: 10.1074/jbc.270.31.18643. [DOI] [PubMed] [Google Scholar]
 - Claassen D. E., Spooner B. S. Reconstitution of cardiac gap junction channeling activity into liposomes: a functional assay for gap junctions. Biochem Biophys Res Commun. 1988 Jul 15;154(1):194–198. doi: 10.1016/0006-291x(88)90669-9. [DOI] [PubMed] [Google Scholar]
 - Condorelli D. F., Parenti R., Spinella F., Trovato Salinaro A., Belluardo N., Cardile V., Cicirata F. Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur J Neurosci. 1998 Mar;10(3):1202–1208. doi: 10.1046/j.1460-9568.1998.00163.x. [DOI] [PubMed] [Google Scholar]
 - Connolly T., Gilmore R. Formation of a functional ribosome-membrane junction during translocation requires the participation of a GTP-binding protein. J Cell Biol. 1986 Dec;103(6 Pt 1):2253–2261. doi: 10.1083/jcb.103.6.2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Ebihara L. Xenopus connexin38 forms hemi-gap-junctional channels in the nonjunctional plasma membrane of Xenopus oocytes. Biophys J. 1996 Aug;71(2):742–748. doi: 10.1016/S0006-3495(96)79273-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Ek-Vitorín J. F., Calero G., Morley G. E., Coombs W., Taffet S. M., Delmar M. PH regulation of connexin43: molecular analysis of the gating particle. Biophys J. 1996 Sep;71(3):1273–1284. doi: 10.1016/S0006-3495(96)79328-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Evans W. H., Ahmad S., Diez J., George C. H., Kendall J. M., Martin P. E. Trafficking pathways leading to the formation of gap junctions. Novartis Found Symp. 1999;219:44–59. doi: 10.1002/9780470515587.ch4. [DOI] [PubMed] [Google Scholar]
 - Falk M. M., Buehler L. K., Kumar N. M., Gilula N. B. Cell-free synthesis and assembly of connexins into functional gap junction membrane channels. EMBO J. 1997 May 15;16(10):2703–2716. doi: 10.1093/emboj/16.10.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Falk M. M., Gilula N. B. Connexin membrane protein biosynthesis is influenced by polypeptide positioning within the translocon and signal peptidase access. J Biol Chem. 1998 Apr 3;273(14):7856–7864. doi: 10.1074/jbc.273.14.7856. [DOI] [PubMed] [Google Scholar]
 - Falk M. M., Kumar N. M., Gilula N. B. Membrane insertion of gap junction connexins: polytopic channel forming membrane proteins. J Cell Biol. 1994 Oct;127(2):343–355. doi: 10.1083/jcb.127.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - George C. H., Kendall J. M., Campbell A. K., Evans W. H. Connexin-aequorin chimerae report cytoplasmic calcium environments along trafficking pathways leading to gap junction biogenesis in living COS-7 cells. J Biol Chem. 1998 Nov 6;273(45):29822–29829. doi: 10.1074/jbc.273.45.29822. [DOI] [PubMed] [Google Scholar]
 - George C. H., Martin P. E., Evans W. H. Rapid determination of gap junction formation using HeLa cells microinjected with cDNAs encoding wild-type and chimeric connexins. Biochem Biophys Res Commun. 1998 Jun 29;247(3):785–789. doi: 10.1006/bbrc.1998.8835. [DOI] [PubMed] [Google Scholar]
 - Goodenough D. A., Goliger J. A., Paul D. L. Connexins, connexons, and intercellular communication. Annu Rev Biochem. 1996;65:475–502. doi: 10.1146/annurev.bi.65.070196.002355. [DOI] [PubMed] [Google Scholar]
 - Hamman B. D., Hendershot L. M., Johnson A. E. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell. 1998 Mar 20;92(6):747–758. doi: 10.1016/s0092-8674(00)81403-8. [DOI] [PubMed] [Google Scholar]
 - Hansen W., Garcia P. D., Walter P. In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent posttranslational translocation of the prepro-alpha-factor. Cell. 1986 May 9;45(3):397–406. doi: 10.1016/0092-8674(86)90325-9. [DOI] [PubMed] [Google Scholar]
 - Jiang J. X., Goodenough D. A. Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1287–1291. doi: 10.1073/pnas.93.3.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Johnston P. A., Südhof T. C. The multisubunit structure of synaptophysin. Relationship between disulfide bonding and homo-oligomerization. J Biol Chem. 1990 May 25;265(15):8869–8873. [PubMed] [Google Scholar]
 - Joshi S., Burrows R. ATP synthase complex from bovine heart mitochondria. Subunit arrangement as revealed by nearest neighbor analysis and susceptibility to trypsin. J Biol Chem. 1990 Aug 25;265(24):14518–14525. [PubMed] [Google Scholar]
 - Kelsell D. P., Dunlop J., Stevens H. P., Lench N. J., Liang J. N., Parry G., Mueller R. F., Leigh I. M. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature. 1997 May 1;387(6628):80–83. doi: 10.1038/387080a0. [DOI] [PubMed] [Google Scholar]
 - Kendall J. M., Badminton M. N. Aequorea victoria bioluminescence moves into an exciting new era. Trends Biotechnol. 1998 May;16(5):216–224. doi: 10.1016/s0167-7799(98)01184-6. [DOI] [PubMed] [Google Scholar]
 - Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
 - Lee M. J., Rhee S. K. Heteromeric gap junction channels in rat hepatocytes in which the expression of connexin26 is induced. Mol Cells. 1998 Jun 30;8(3):295–300. [PubMed] [Google Scholar]
 - Li H., Liu T. F., Lazrak A., Peracchia C., Goldberg G. S., Lampe P. D., Johnson R. G. Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J Cell Biol. 1996 Aug;134(4):1019–1030. doi: 10.1083/jcb.134.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Lu Y., Xiong X., Helm A., Kimani K., Bragin A., Skach W. R. Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly. J Biol Chem. 1998 Jan 2;273(1):568–576. doi: 10.1074/jbc.273.1.568. [DOI] [PubMed] [Google Scholar]
 - Mambetisaeva E. T., Martin P. E., Evans W. H. Expression of three functional domains of connexin 32 as thioredoxin fusion proteins in Escherichia coli and generation of antibodies. Protein Expr Purif. 1997 Oct;11(1):26–34. doi: 10.1006/prep.1997.0761. [DOI] [PubMed] [Google Scholar]
 - Marquardt T., Hebert D. N., Helenius A. Post-translational folding of influenza hemagglutinin in isolated endoplasmic reticulum-derived microsomes. J Biol Chem. 1993 Sep 15;268(26):19618–19625. [PubMed] [Google Scholar]
 - Martin P. E., George C. H., Castro C., Kendall J. M., Capel J., Campbell A. K., Revilla A., Barrio L. C., Evans W. H. Assembly of chimeric connexin-aequorin proteins into functional gap junction channels. Reporting intracellular and plasma membrane calcium environments. J Biol Chem. 1998 Jan 16;273(3):1719–1726. doi: 10.1074/jbc.273.3.1719. [DOI] [PubMed] [Google Scholar]
 - Mueckler M., Lodish H. F. The human glucose transporter can insert posttranslationally into microsomes. Cell. 1986 Feb 28;44(4):629–637. doi: 10.1016/0092-8674(86)90272-2. [DOI] [PubMed] [Google Scholar]
 - Munro S. Localization of proteins to the Golgi apparatus. Trends Cell Biol. 1998 Jan;8(1):11–15. doi: 10.1016/S0962-8924(97)01197-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Nicholson S. M., Bruzzone R. Gap junctions: getting the message through. Curr Biol. 1997 Jun 1;7(6):R340–R344. doi: 10.1016/s0960-9822(06)00169-2. [DOI] [PubMed] [Google Scholar]
 - Peracchia C., Girsch S. J. Permeability and gating of lens gap junction channels incorporated into liposomes. Curr Eye Res. 1985 Apr;4(4):431–439. doi: 10.3109/02713688509025157. [DOI] [PubMed] [Google Scholar]
 - Perara E., Rothman R. E., Lingappa V. R. Uncoupling translocation from translation: implications for transport of proteins across membranes. Science. 1986 Apr 18;232(4748):348–352. doi: 10.1126/science.3961485. [DOI] [PubMed] [Google Scholar]
 - Pfahnl A., Zhou X. W., Werner R., Dahl G. A chimeric connexin forming gap junction hemichannels. Pflugers Arch. 1997 Apr;433(6):773–779. doi: 10.1007/s004240050344. [DOI] [PubMed] [Google Scholar]
 - Rahman S., Carlile G., Evans W. H. Assembly of hepatic gap junctions. Topography and distribution of connexin 32 in intracellular and plasma membranes determined using sequence-specific antibodies. J Biol Chem. 1993 Jan 15;268(2):1260–1265. [PubMed] [Google Scholar]
 - Reimann J., Kaufmann S. H. Alternative antigen processing pathways in anti-infective immunity. Curr Opin Immunol. 1997 Aug;9(4):462–469. doi: 10.1016/s0952-7915(97)80096-9. [DOI] [PubMed] [Google Scholar]
 - Rhee S. K., Bevans C. G., Harris A. L. Channel-forming activity of immunoaffinity-purified connexin32 in single phospholipid membranes. Biochemistry. 1996 Jul 16;35(28):9212–9223. doi: 10.1021/bi960295m. [DOI] [PubMed] [Google Scholar]
 - Schatz G., Dobberstein B. Common principles of protein translocation across membranes. Science. 1996 Mar 15;271(5255):1519–1526. doi: 10.1126/science.271.5255.1519. [DOI] [PubMed] [Google Scholar]
 - Schneider C., Newman R. A., Sutherland D. R., Asser U., Greaves M. F. A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem. 1982 Sep 25;257(18):10766–10769. [PubMed] [Google Scholar]
 - Sosinsky G. Mixing of connexins in gap junction membrane channels. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9210–9214. doi: 10.1073/pnas.92.20.9210. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Stauffer K. A. The gap junction proteins beta 1-connexin (connexin-32) and beta 2-connexin (connexin-26) can form heteromeric hemichannels. J Biol Chem. 1995 Mar 24;270(12):6768–6772. [PubMed] [Google Scholar]
 - Sáez J. C., Martínez A. D., Brañes M. C., González H. E. Regulation of gap junctions by protein phosphorylation. Braz J Med Biol Res. 1998 May;31(5):593–600. doi: 10.1590/s0100-879x1998000500001. [DOI] [PubMed] [Google Scholar]
 - Söhl G., Degen J., Teubner B., Willecke K. The murine gap junction gene connexin36 is highly expressed in mouse retina and regulated during brain development. FEBS Lett. 1998 May 22;428(1-2):27–31. doi: 10.1016/s0014-5793(98)00479-7. [DOI] [PubMed] [Google Scholar]
 - Veenstra R. D. Size and selectivity of gap junction channels formed from different connexins. J Bioenerg Biomembr. 1996 Aug;28(4):327–337. doi: 10.1007/BF02110109. [DOI] [PubMed] [Google Scholar]
 - Warn-Cramer B. J., Cottrell G. T., Burt J. M., Lau A. F. Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase. J Biol Chem. 1998 Apr 10;273(15):9188–9196. doi: 10.1074/jbc.273.15.9188. [DOI] [PubMed] [Google Scholar]
 - Warner A. Gap junctions in development--a perspective. Semin Cell Biol. 1992 Feb;3(1):81–91. doi: 10.1016/s1043-4682(10)80009-1. [DOI] [PubMed] [Google Scholar]
 - Wenzel K., Manthey D., Willecke K., Grzeschik K. H., Traub O. Human gap junction protein connexin31: molecular cloning and expression analysis. Biochem Biophys Res Commun. 1998 Jul 30;248(3):910–915. doi: 10.1006/bbrc.1998.9070. [DOI] [PubMed] [Google Scholar]
 - White T. W., Paul D. L., Goodenough D. A., Bruzzone R. Functional analysis of selective interactions among rodent connexins. Mol Biol Cell. 1995 Apr;6(4):459–470. doi: 10.1091/mbc.6.4.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Zhang J. T., Chen M., Foote C. I., Nicholson B. J. Membrane integration of in vitro-translated gap junctional proteins: co- and post-translational mechanisms. Mol Biol Cell. 1996 Mar;7(3):471–482. doi: 10.1091/mbc.7.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
 
