Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 15;339(Pt 2):255–260.

Aspartate-27 and glutamate-473 are involved in catalysis by Zymomonas mobilis pyruvate decarboxylase.

A K Chang 1, P F Nixon 1, R G Duggleby 1
PMCID: PMC1220153  PMID: 10191255

Abstract

Zymomonas mobilis pyruvate decarboxylase (EC 4.1.1.1) was subjected to site-directed mutagenesis at two acidic residues near the thiamin diphosphate cofactor in the active site. Asp-27 was changed to Glu or Asn, and Glu-473 was mutated to Asp (E473D) or Gln (E473Q). Each mutant protein was purified to near-homogeneity, and the kinetic and cofactor-binding properties were compared with those of the wild-type protein. Despite the very conservative nature of these alterations, all mutants had a very low, but measurable, specific activity ranging from 0.025% (E473Q) to 0.173% (E473D) of the wild type. With the exception of E473Q, the mutants showed small decreases in the affinity for thiamin diphosphate, and binding of the second cofactor (Mg2+) was also weakened somewhat. With E473Q, both cofactors seemed to be very tightly bound so that they were not removed by the treatment that was effective for the wild-type enzyme and other mutant forms. All mutants showed minor changes in the Km for substrate, but these alterations did not account for the low activities. These low specific activities, accompanied by little change in the Km for pyruvate, are consistent with a quantitative model of the catalytic cycle in which the main effect of the mutations is to slow the decarboxylation step with a minor change in the rate constant for pyruvate binding.

Full Text

The Full Text of this article is available as a PDF (141.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arjunan P., Umland T., Dyda F., Swaminathan S., Furey W., Sax M., Farrenkopf B., Gao Y., Zhang D., Jordan F. Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3 A resolution. J Mol Biol. 1996 Mar 1;256(3):590–600. doi: 10.1006/jmbi.1996.0111. [DOI] [PubMed] [Google Scholar]
  2. Baburina I., Dikdan G., Guo F., Tous G. I., Root B., Jordan F. Reactivity at the substrate activation site of yeast pyruvate decarboxylase: inhibition by distortion of domain interactions. Biochemistry. 1998 Feb 3;37(5):1245–1255. doi: 10.1021/bi9709912. [DOI] [PubMed] [Google Scholar]
  3. Baburina I., Li H., Bennion B., Furey W., Jordan F. Interdomain information transfer during substrate activation of yeast pyruvate decarboxylase: the interaction between cysteine 221 and histidine 92. Biochemistry. 1998 Feb 3;37(5):1235–1244. doi: 10.1021/bi970990+. [DOI] [PubMed] [Google Scholar]
  4. Boiteux A., Hess B. Allosteric properties of yeast pyruvate decarboxylase. FEBS Lett. 1970 Aug 31;9(5):293–296. doi: 10.1016/0014-5793(70)80381-7. [DOI] [PubMed] [Google Scholar]
  5. Candy J. M., Duggleby R. G. Investigation of the cofactor-binding site of Zymomonas mobilis pyruvate decarboxylase by site-directed mutagenesis. Biochem J. 1994 May 15;300(Pt 1):7–13. doi: 10.1042/bj3000007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Candy J. M., Duggleby R. G. Structure and properties of pyruvate decarboxylase and site-directed mutagenesis of the Zymomonas mobilis enzyme. Biochim Biophys Acta. 1998 Jun 29;1385(2):323–338. doi: 10.1016/s0167-4838(98)00077-6. [DOI] [PubMed] [Google Scholar]
  7. Candy J. M., Koga J., Nixon P. F., Duggleby R. G. The role of residues glutamate-50 and phenylalanine-496 in Zymomonas mobilis pyruvate decarboxylase. Biochem J. 1996 May 1;315(Pt 3):745–751. doi: 10.1042/bj3150745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Diefenbach R. J., Candy J. M., Mattick J. S., Duggleby R. G. Effects of substitution of aspartate-440 and tryptophan-487 in the thiamin diphosphate binding region of pyruvate decarboxylase from Zymomonas mobilis. FEBS Lett. 1992 Jan 13;296(1):95–98. doi: 10.1016/0014-5793(92)80411-9. [DOI] [PubMed] [Google Scholar]
  9. Diefenbach R. J., Duggleby R. G. Pyruvate decarboxylase from Zymomonas mobilis. Structure and re-activation of apoenzyme by the cofactors thiamin diphosphate and magnesium ion. Biochem J. 1991 Jun 1;276(Pt 2):439–445. doi: 10.1042/bj2760439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dobritzsch D., König S., Schneider G., Lu G. High resolution crystal structure of pyruvate decarboxylase from Zymomonas mobilis. Implications for substrate activation in pyruvate decarboxylases. J Biol Chem. 1998 Aug 7;273(32):20196–20204. doi: 10.1074/jbc.273.32.20196. [DOI] [PubMed] [Google Scholar]
  11. Duggleby R. G. Regression analysis of nonlinear Arrhenius plots: an empirical model and a computer program. Comput Biol Med. 1984;14(4):447–455. doi: 10.1016/0010-4825(84)90045-3. [DOI] [PubMed] [Google Scholar]
  12. Dyda F., Furey W., Swaminathan S., Sax M., Farrenkopf B., Jordan F. Catalytic centers in the thiamin diphosphate dependent enzyme pyruvate decarboxylase at 2.4-A resolution. Biochemistry. 1993 Jun 22;32(24):6165–6170. doi: 10.1021/bi00075a008. [DOI] [PubMed] [Google Scholar]
  13. Eppendorfer S., König S., Golbik R., Neef H., Lehle K., Jaenicke R., Schellenberger A., Hübner G. Effects of metal ions, thiamine diphosphate analogues and subunit interactions on the reconstitution behaviour of pyruvate decarboxylase from brewer's yeast. Biol Chem Hoppe Seyler. 1993 Dec;374(12):1129–1134. doi: 10.1515/bchm3.1993.374.7-12.1129. [DOI] [PubMed] [Google Scholar]
  14. Gounaris A. D., Turkenkopf I., Buckwald S., Young A. Pyruvate decarboxylase. I. Protein dissociation into subunits under conditions in which thiamine pyrophosphate is released. J Biol Chem. 1971 Mar 10;246(5):1302–1309. [PubMed] [Google Scholar]
  15. Harris T. K., Washabaugh M. W. Solvent-derived protons in catalysis by brewers' yeast pyruvate decarboxylase. Biochemistry. 1995 Oct 31;34(43):14001–14011. doi: 10.1021/bi00043a006. [DOI] [PubMed] [Google Scholar]
  16. Hübner G., König S., Schellenberger A., Koch M. H. An X-ray solution scattering study of the cofactor and activator induced structural changes in yeast pyruvate decarboxylase (PDC). FEBS Lett. 1990 Jun 18;266(1-2):17–20. doi: 10.1016/0014-5793(90)81495-a. [DOI] [PubMed] [Google Scholar]
  17. Hübner G., Weidhase R., Schellenberger A. The mechanism of substrate activation of pyruvate decarboxylase: a first approach. Eur J Biochem. 1978 Dec 1;92(1):175–181. doi: 10.1111/j.1432-1033.1978.tb12735.x. [DOI] [PubMed] [Google Scholar]
  18. Jordan F., Nemeria N., Guo F., Baburina I., Gao Y., Kahyaoglu A., Li H., Wang J., Yi J., Guest J. R. Regulation of thiamin diphosphate-dependent 2-oxo acid decarboxylases by substrate and thiamin diphosphate.Mg(II) - evidence for tertiary and quaternary interactions. Biochim Biophys Acta. 1998 Jun 29;1385(2):287–306. doi: 10.1016/s0167-4838(98)00075-2. [DOI] [PubMed] [Google Scholar]
  19. Kern D., Kern G., Neef H., Tittmann K., Killenberg-Jabs M., Wikner C., Schneider G., Hübner G. How thiamine diphosphate is activated in enzymes. Science. 1997 Jan 3;275(5296):67–70. doi: 10.1126/science.275.5296.67. [DOI] [PubMed] [Google Scholar]
  20. König S., Svergun D. I., Volkov V. V., Feigin L. A., Koch M. H. Small-angle X-ray solution-scattering studies on ligand-induced subunit interactions of the thiamine diphosphate dependent enzyme pyruvate decarboxylase from different organisms. Biochemistry. 1998 Apr 14;37(15):5329–5334. doi: 10.1021/bi972125v. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lu G., Dobritzsch D., König S., Schneider G. Novel tetramer assembly of pyruvate decarboxylase from brewer's yeast observed in a new crystal form. FEBS Lett. 1997 Feb 24;403(3):249–253. doi: 10.1016/s0014-5793(97)00057-4. [DOI] [PubMed] [Google Scholar]
  23. Neale A. D., Scopes R. K., Wettenhall R. E., Hoogenraad N. J. Nucleotide sequence of the pyruvate decarboxylase gene from Zymomonas mobilis. Nucleic Acids Res. 1987 Feb 25;15(4):1753–1761. doi: 10.1093/nar/15.4.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pohl M., Grötzinger J., Wollmer A., Kula M. R. Reversible dissociation and unfolding of pyruvate decarboxylase from Zymomonas mobilis. Eur J Biochem. 1994 Sep 1;224(2):651–661. doi: 10.1111/j.1432-1033.1994.0651a.x. [DOI] [PubMed] [Google Scholar]
  25. Pohl M. Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. Application to mechanistical investigations, and tailoring PDC for the use in organic synthesis. Adv Biochem Eng Biotechnol. 1997;58:15–43. [PubMed] [Google Scholar]
  26. Pohl M., Siegert P., Mesch K., Bruhn H., Grötzinger J. Active site mutants of pyruvate decarboxylase from Zymomonas mobilis--a site-directed mutagenesis study of L112, I472, I476, E473, and N482. Eur J Biochem. 1998 Nov 1;257(3):538–546. doi: 10.1046/j.1432-1327.1998.2570538.x. [DOI] [PubMed] [Google Scholar]
  27. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  28. Vaccaro J. A., Crane E. J., 3rd, Harris T. K., Washabaugh M. W. Mechanism of reconstitution of brewers' yeast pyruvate decarboxylase with thiamin diphosphate and magnesium. Biochemistry. 1995 Oct 3;34(39):12636–12644. doi: 10.1021/bi00039a020. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES