Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 15;339(Pt 2):261–267.

Protein structure and gene cloning of Syncephalastrum racemosum nuclease.

H C Ho 1, T H Liao 1
PMCID: PMC1220154  PMID: 10191256

Abstract

The complete amino acid sequence of the fungus Syncephalastrum racemosum (Sr-) nuclease has been delineated on the basis of protein sequencing of the intact protein and its protease-digested peptides. The resulting 250-residue sequence shows a carbohydrate side chain attached at Asn134 and two half-cystine residues (Cys242 and Cys247) cross-linked to form a small disulphide loop. On the basis of the sequence of Sr-nuclease, a computer search in the sequence database yielded 60% and 48% positional identities with the sequences of Cunninghamella echinulata nuclease C1 and yeast mitochondria nuclease respectively, and very little similarity to those of several known mammalian DNases I. Sequence alignment of the three similar nucleases reveals that the single small disulphide loop is unchanged but the carbohydrate attachment in Sr-nuclease is absent from the other two nucleases. Alignment also shows a highly conserved region harbouring Sr-nuclease His85, which is assigned as one of the essential residues in the active site. The cDNA encoding Sr-nuclease was amplified by using reverse transcriptase-mediated PCR with degenerate primers based on its amino acid sequence. Subsequently, specific primers were synthesized for use in the 3' and 5' rapid amplification of cDNA ends (RACE). Direct sequencing of the RACE products led to the deduction of a 1.1 kb cDNA sequence for Sr-nuclease. The cDNA contains an open reading frame of 320 amino acid residues including a 70-residue putative signal peptide and the 250-residue mature protein. Finally, the recombinant Sr-nuclease was expressed in Escherichia coli strain BL21(DE3) in which the recombinant protein, after solubilization with detergent and renaturation, showed both DNase and RNase activities. The assignment of His85 to the active site was further supported by evidence that the mutant protein Sr-nuclease (H85A), in which His85 was replaced by Ala, was not able to degrade DNA or RNA.

Full Text

The Full Text of this article is available as a PDF (215.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball T. K., Saurugger P. N., Benedik M. J. The extracellular nuclease gene of Serratia marcescens and its secretion from Escherichia coli. Gene. 1987;57(2-3):183–192. doi: 10.1016/0378-1119(87)90121-1. [DOI] [PubMed] [Google Scholar]
  2. Ball W. D. Isolation of salivary ribonuclease, deoxyribonuclease and amylase from the parotid gland of the rat, Rattus norvegicus albinus. Biochim Biophys Acta. 1974 Apr 25;341(2):305–317. doi: 10.1016/0005-2744(74)90223-x. [DOI] [PubMed] [Google Scholar]
  3. Berka R. M., Carmona C. L., Hayenga K. J., Thompson S. A., Ward M. Isolation and characterization of the Aspergillus oryzae gene encoding aspergillopepsin O. Gene. 1993 Mar 30;125(2):195–198. doi: 10.1016/0378-1119(93)90328-z. [DOI] [PubMed] [Google Scholar]
  4. Campbell A. M., Winder F. G. Properties of deoxyribonuclease 4 from Aspergillus nidulans. Biochim Biophys Acta. 1983 Aug 16;746(3):125–132. doi: 10.1016/0167-4838(83)90065-1. [DOI] [PubMed] [Google Scholar]
  5. Chang M. C., Chang S. Y., Chen S. L., Chuang S. M. Cloning and expression in Escherichia coli of the gene encoding an extracellular deoxyribonuclease (DNase) from Aeromonas hydrophila. Gene. 1992 Dec 1;122(1):175–180. doi: 10.1016/0378-1119(92)90046-r. [DOI] [PubMed] [Google Scholar]
  6. Chen L. Y., Ho H. C., Tsai Y. C., Liao T. H. Deoxyribonuclease of Syncephalastrum racemosum--enzymatic properties and molecular structure. Arch Biochem Biophys. 1993 May 15;303(1):51–56. doi: 10.1006/abbi.1993.1254. [DOI] [PubMed] [Google Scholar]
  7. Chou M. Y., Liao T. H. Shrimp hepatopancreatic deoxyribonuclease--purification and characterization as well as comparison with bovine pancreatic deoxyribonuclease. Biochim Biophys Acta. 1990 Nov 9;1036(2):95–100. doi: 10.1016/0304-4165(90)90019-s. [DOI] [PubMed] [Google Scholar]
  8. Dake E., Hofmann T. J., McIntire S., Hudson A., Zassenhaus H. P. Purification and properties of the major nuclease from mitochondria of Saccharomyces cerevisiae. J Biol Chem. 1988 Jun 5;263(16):7691–7702. [PubMed] [Google Scholar]
  9. Focareta T., Manning P. A. Extracellular proteins of Vibrio cholerae: molecular cloning, nucleotide sequence and characterization of the deoxyribonuclease (DNase) together with its periplasmic localization in Escherichia coli K-12. Gene. 1987;53(1):31–40. doi: 10.1016/0378-1119(87)90090-4. [DOI] [PubMed] [Google Scholar]
  10. Friedhoff P., Gimadutdinow O., Pingoud A. Identification of catalytically relevant amino acids of the extracellular Serratia marcescens endonuclease by alignment-guided mutagenesis. Nucleic Acids Res. 1994 Aug 25;22(16):3280–3287. doi: 10.1093/nar/22.16.3280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
  12. Ho H. C., Shiau P. F., Liu F. C., Chung J. G., Chen L. Y. Purification, characterization and complete amino acid sequence of nuclease C1 from Cunninghamella echinulata var. echinulata. Eur J Biochem. 1998 Aug 15;256(1):112–118. doi: 10.1046/j.1432-1327.1998.2560112.x. [DOI] [PubMed] [Google Scholar]
  13. Hsiao Y. M., Ho H. C., Wang W. Y., Tam M. F., Liao T. H. Purification and characterization of tilapia (Oreochromis mossambicus) deoxyribonuclease I--primary structure and cDNA sequence. Eur J Biochem. 1997 Nov 1;249(3):786–791. doi: 10.1111/j.1432-1033.1997.t01-2-00786.x. [DOI] [PubMed] [Google Scholar]
  14. Jekel M., Wackernagel W. The periplasmic endonuclease I of Escherichia coli has amino-acid sequence homology to the extracellular DNases of Vibrio cholerae and Aeromonas hydrophila. Gene. 1995 Feb 27;154(1):55–59. doi: 10.1016/0378-1119(94)00835-g. [DOI] [PubMed] [Google Scholar]
  15. LEHMAN I. R., ROUSSOS G. G., PRATT E. A. The deoxyribonucleases of Escherichia coli. II. Purification and properties of a ribonucleic acid-inhibitable endonuclease. J Biol Chem. 1962 Mar;237:819–828. [PubMed] [Google Scholar]
  16. Li C. J., Hwa K. Y., Englund P. T. A DNase from the trypanosomatid Crithidia fasciculata. Nucleic Acids Res. 1995 Nov 11;23(21):4426–4433. [PMC free article] [PubMed] [Google Scholar]
  17. Liao T. H. Bovine pancreatic deoxyribonuclease D. J Biol Chem. 1974 Apr 25;249(8):2354–2356. [PubMed] [Google Scholar]
  18. Lindberg U. Molecular weight and amino acid composition of deoxyribonuclease I. Biochemistry. 1967 Jan;6(1):335–342. doi: 10.1021/bi00853a050. [DOI] [PubMed] [Google Scholar]
  19. Lunin V. Y., Levdikov V. M., Shlyapnikov S. V., Blagova E. V., Lunin V. V., Wilson K. S., Mikhailov A. M. Three-dimensional structure of Serratia marcescens nuclease at 1.7 A resolution and mechanism of its action. FEBS Lett. 1997 Jul 21;412(1):217–222. doi: 10.1016/s0014-5793(97)00512-7. [DOI] [PubMed] [Google Scholar]
  20. Moulard M., Condemine G., Nasser W., Robert-Baudouy J. Purification and characterization of the nuclease NucM of Erwinia chrysanthemi. Biochim Biophys Acta. 1995 Jun 9;1262(2-3):133–138. doi: 10.1016/0167-4781(95)00061-k. [DOI] [PubMed] [Google Scholar]
  21. Murai K., Yamanaka M., Akagi K., Anai M., Mukai T., Omae T. Purification and properties of deoxyribonuclease from human urine. Biochim Biophys Acta. 1978 Jan 26;517(1):186–194. doi: 10.1016/0005-2787(78)90046-1. [DOI] [PubMed] [Google Scholar]
  22. Muro-Pastor A. M., Flores E., Herrero A., Wolk C. P. Identification, genetic analysis and characterization of a sugar-non-specific nuclease from the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol. 1992 Oct;6(20):3021–3030. doi: 10.1111/j.1365-2958.1992.tb01760.x. [DOI] [PubMed] [Google Scholar]
  23. Paudel H. K., Liao T. H. Purification, characterization, and the complete amino acid sequence of porcine pancreatic deoxyribonuclease. J Biol Chem. 1986 Dec 5;261(34):16006–16011. [PubMed] [Google Scholar]
  24. Price P. A., Liu T. Y., Stein W. H., Moore S. Properties of chromatographically purified bovine pancreatic deoxyribonuclease. J Biol Chem. 1969 Feb 10;244(3):917–923. [PubMed] [Google Scholar]
  25. Rosenthal A. L., Lacks S. A. Nuclease detection in SDS-polyacrylamide gel electrophoresis. Anal Biochem. 1977 May 15;80(1):76–90. doi: 10.1016/0003-2697(77)90627-3. [DOI] [PubMed] [Google Scholar]
  26. Runeberg-Roos P., Törmäkangas K., Ostman A. Primary structure of a barley-grain aspartic proteinase. A plant aspartic proteinase resembling mammalian cathepsin D. Eur J Biochem. 1991 Dec 18;202(3):1021–1027. doi: 10.1111/j.1432-1033.1991.tb16465.x. [DOI] [PubMed] [Google Scholar]
  27. Takahashi K. A revision and confirmation of the amino acid sequence of ribonuclease T1. J Biochem. 1985 Sep;98(3):815–817. doi: 10.1093/oxfordjournals.jbchem.a135339. [DOI] [PubMed] [Google Scholar]
  28. Takahashi K. The amino acid sequence of ribonuclease N1, a guanine-specific ribonuclease from the fungus Neurospora crassa. J Biochem. 1988 Sep;104(3):375–382. doi: 10.1093/oxfordjournals.jbchem.a122476. [DOI] [PubMed] [Google Scholar]
  29. Vincent R. D., Hofmann T. J., Zassenhaus H. P. Sequence and expression of NUC1, the gene encoding the mitochondrial nuclease in Saccharomyces cerevisiae. Nucleic Acids Res. 1988 Apr 25;16(8):3297–3312. doi: 10.1093/nar/16.8.3297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wadano A., Hobus P. A., Liao T. H. Isolation and characterization of multiple forms of ovine pancreatic deoxyribonuclease. Chromatograhpic behavior of the enzyme on concanavalin A-agarose and carboxymethylcellulose columns. Biochemistry. 1979 Sep 18;18(19):4124–4130. doi: 10.1021/bi00586a011. [DOI] [PubMed] [Google Scholar]
  31. Yasuda T., Takeshita H., Nakajima T., Hosomi O., Nakashima Y., Kishi K. Rabbit DNase I: purification from urine, immunological and proteochemical characterization, nucleotide sequence, expression in tissues, relationships with other mammalian DNases I and phylogenetic analysis. Biochem J. 1997 Jul 15;325(Pt 2):465–473. doi: 10.1042/bj3250465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zassenhaus H. P., Denniger G. Analysis of the role of the NUC1 endo/exonuclease in yeast mitochondrial DNA recombination. Curr Genet. 1994 Feb;25(2):142–149. doi: 10.1007/BF00309540. [DOI] [PubMed] [Google Scholar]
  33. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES