Skip to main content
Journal of Cancer Research and Clinical Oncology logoLink to Journal of Cancer Research and Clinical Oncology
. 1991 Mar;117(2):91–95. doi: 10.1007/BF01613130

Ribonucleotide reductase in melanoma tissue

EPR detection in human amelanotic melanoma and quenching of the tyrosine radical by 4-hydroxyanisole

G Lassmann 1,, B Liermann 1, W Arnold 2, K Schwabe 2
PMCID: PMC12201543  PMID: 1848862

Abstract

The characteristic EPR doublet of tyrosine radicals of the growth-regulating enzyme ribonucleotide reductase was detected in human melanoma tissue grown in nude mice. This was possible through the use of an amelanotic melanoma that does not exhibit disturbing EPR signals from melanin. The content of tyrosine radicals is higher in young tumor tissues than in older ones. The clinically applied antimelanotic drug, 4-hydroxyanisole, inhibits ribonucleotide reductase in Ehrlich ascites tumor cells as demonstrated by a pronounced quenching of tyrosine radicals (IC50=5 μM). In amelanotic melanoma tissue tyrosine radicals of the enzyme are also quenched by 4-hydroxyanisole in concentrations down to 50 μM. Thus, the inactivation of ribonucleotide reductase, which provides deoxyribonucleotides for DNA synthesis, may be a hitherto unexpected mechanism for the antitumor action of 4-hydroxyanisole.

Key words: Ribonucleotide reductase, Melanoma, EPR, Tyrosine radical, 4-Hydroxyanisole

Abbreviations

EPR

electron paramagnetic resonance

RR

ribonucleotide reductase

4-HA

4-hydroxyanisole

References

  1. Arnold W (1988) Tumormodelle zur in vivo —Charakterisierung antineoplastischer Pharmaka. Dissertation B, Akademie der Wissenschaften
  2. Cory JG, Cory AH (1989) Inhibitors of ribonucleotide diphosphate reductases activity. Pergamon Press, New York [Google Scholar]
  3. Dewey DL, Butcher FW, Galpine AR (1977) Hydroxyanisole-induced regression of the Harding-Passey melanoma in mice. J Pathol 122:117–127 [DOI] [PubMed] [Google Scholar]
  4. Elford HL (1984) The effect of hydroxyanisole on mammalian ribonucleotide reductase. In: Riley PA (ed) Hydroxyanisole, recent advances in antimelanoma therapy. IRL, Oxford, pp 71–76 [Google Scholar]
  5. Eriksson S, Graeslund A, Skog S, Thelander L, Tribukait B (1984) Cell cycle-dependent regulation of mammalian ribonucleotide reductase. The S phase-correlated increase in subunits M2 is regulated by de-novo protein synthesis. J Biol Chem 259:11695–11700 [PubMed] [Google Scholar]
  6. Fiedler H, Luebbe D, Wohlrab W, Wozniak KD, Taube HM, Hetschko I (1989) Die Ergebnisse der Chemotherapie des malignen Melanoms —5-Jahresanalyse einer prospektiven randomisierten Studie. In: Wosniak KD, Luebbe D (Hrsg) Wissenschaftliche Beiträge der Martin-Luther-Universität Halle-Wittenberg, S 158
  7. Godzowa KW, Pultowa MU, Gorbachova LB (1987) Change of activity of ribonucleotide reductase of leukemic cells and spleen of mice in vivo during malignant growth and under influence of hydroxyurea. Dokl Acad Nauk USSR 297:480–482 [PubMed] [Google Scholar]
  8. Graeslund A, Ehrenberg A, Ehrenberg C (1983) Characterization of the free radical of mammalian ribonucleotide reductase. J Biol Chem 257:5711–5715 [PubMed] [Google Scholar]
  9. Graeslund A, Sahlin M, Sjoeberg BM (1985) The tyrosyl free radical in ribonucleotide reductase. Health Perspect 64:139–149 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lammers M, Follmann H (1983) The ribonucleotide reductases: a unique group of metalloenymes essential for cell proliferation. Struct Bonding 54:27–91 [Google Scholar]
  11. Lassmann G, Liermann B, Lehmann W, Graetz H, Koberling A, Langen P (1985) Ribonucleotide reductase in ascites tumor cells detected by electron paramagnetic resonance spectroscopy. Biochem Biophys Res Commun 132:1137–1143 [DOI] [PubMed] [Google Scholar]
  12. Lassmann G, Liermann B, Langen P (1988) Stability and reactivation of tyrosine radicals from ribonucleotide reductase in tumor cells studies by ESR. Free Rad Biol Med 6:9–14 [DOI] [PubMed] [Google Scholar]
  13. Lassmann G, Wessel R, Grasshoff P, Jakobs K, Schwarz D (1990) Einsatz des Arbeitsplatzrechners A 7100 zur Rationalisierung der Forschung in spektroskopischen Laboren. On-line-Kopplung am Beispiel von ESR-Spektrometern und Grafik-Software zur Erfassung bzw. Verarbeitung spektroskopischer Daten. Exp Techn Phys (im Druck)
  14. Liermann B, Lassmann G, Langen P (1990) Quenching of tyrosine radicals of M2 subunit from ribonucleotide reductase in tumor cells by different antitumor agents. An EPR study. Free Rad Biol Med 9:1–4 [DOI] [PubMed] [Google Scholar]
  15. Metcalf D (1984) Clonal culture of hemopoietic cells. Elsevier, New York [Google Scholar]
  16. Morgan BDG, O'Neill TO, Dewey DL, Galpine AR, Riley PA (1981) Treatment of malignant melanoma by intravascular 4-hydroxyanisole. Clin Oncol 7:227–234 [PubMed] [Google Scholar]
  17. Neumeier R, Maurer HR (1980) Bovine lung conditioned medium as a source both human and murine colony-stimulating factor. Exp Hematol 8:728–736 [PubMed] [Google Scholar]
  18. Nilges MJ, Swartz HM, Riley PA (1984) Identification by ESR of free radicals formed during the oxidation of 4-hydroxyanisole catalyzed by tyrosinase. J Biol Chem 259:2446–2451 [PubMed] [Google Scholar]
  19. Pavel S, Holden JL, Riley PA (1989) Metabolism of 4-hydroxyanisole: identification of major urinary excretory products. Pigm Cell Res 2:421–426 [DOI] [PubMed] [Google Scholar]
  20. Pulatowa MK, Richirewa GT, Kuroptewa (1989) EPR in molecular radiobiology (in Russian). Energoatomisdat, Moscow, p 92 [Google Scholar]
  21. Riley PA (1985) Radicals and melanomas. Philos Trans R Soc London [Biol] 311:679–689 [DOI] [PubMed] [Google Scholar]
  22. Rubin EH, Cory JG (1986) Differential turnover of the subunits of ribonucleotide reductase in synchronized leukemia L 1210 cells. Cancer Res 46:6165–6168 [PubMed] [Google Scholar]
  23. Sjoeberg BM, Graeslund A (1983) Ribonucleotide reductase. Adv Inorg Biochem 5:87–110 [PubMed] [Google Scholar]

Articles from Journal of Cancer Research and Clinical Oncology are provided here courtesy of Springer

RESOURCES