Abstract
Vanadate and peroxovanadate (pV), potent inhibitors of tyrosine phosphatases, mimic several of the metabolic actions of insulin. Here we compare the mechanisms for the anti-lipolytic action of insulin, vanadate and pV in rat adipocytes. Vanadate (5 mM) and pV (0.01 mM) inhibited lipolysis induced by 0.01-1 microM isoprenaline, vanadate being more and pV less efficient than insulin (1 nM). A loss of anti-lipolytic effect of pV was observed by increasing the concentration of isoprenaline and/or pV. pV induced tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 to a greater extent than insulin, whereas vanadate affected these components little if at all. In addition, only a higher concentration (0.1 mM) of pV induced the tyrosine phosphorylation of p85, the 85 kDa regulatory subunit of phosphoinositide 3-kinase (PI-3K). Vanadate activated PI-3K-independent (in the presence of 10 nM isoprenaline) and PI-3K-dependent (in the presence of 100 nM isoprenaline) anti-lipolytic pathways, both of which were found to be independent of phosphodiesterase type 3B (PDE3B). pV (0.01 mM), like insulin, activated PI-3K- and PDE3B-dependent pathways. However, the anti-lipolytic pathway of 0.1 mM pV did not seem to require insulin receptor substrate-1-associated PI-3K and was found to be partly independent of PDE3B. Vanadate and pV (only at 0.01 mM), like insulin, decreased the isoprenaline-induced activation of cAMP-dependent protein kinase. Overall, these results underline the complexity and the diversity in the mechanisms that regulate lipolysis.
Full Text
The Full Text of this article is available as a PDF (257.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anai M., Ono H., Funaki M., Fukushima Y., Inukai K., Ogihara T., Sakoda H., Onishi Y., Yazaki Y., Kikuchi M. Different subcellular distribution and regulation of expression of insulin receptor substrate (IRS)-3 from those of IRS-1 and IRS-2. J Biol Chem. 1998 Nov 6;273(45):29686–29692. doi: 10.1074/jbc.273.45.29686. [DOI] [PubMed] [Google Scholar]
- Anthonsen M. W., Rönnstrand L., Wernstedt C., Degerman E., Holm C. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem. 1998 Jan 2;273(1):215–221. doi: 10.1074/jbc.273.1.215. [DOI] [PubMed] [Google Scholar]
- Bahouth S. W., Gokmen-Polar Y., Coronel E. C., Fain J. N. Enhanced desensitization and phosphorylation of the beta 1-adrenergic receptor in rat adipocytes by peroxovanadate. Mol Pharmacol. 1996 Jun;49(6):1049–1057. [PubMed] [Google Scholar]
- Boyle W. J., van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 1991;201:110–149. doi: 10.1016/0076-6879(91)01013-r. [DOI] [PubMed] [Google Scholar]
- Brownsey R. W., Dong G. W. Evidence for selective effects of vanadium on adipose cell metabolism involving actions on cAMP-dependent protein kinase. Mol Cell Biochem. 1995 Dec 6;153(1-2):131–137. doi: 10.1007/BF01075928. [DOI] [PubMed] [Google Scholar]
- Chang K. J., Marcus N. A., Cuatrecasas P. Cyclic adenosine monophosphate-dependent phosphorylation of specific fat cell membrane proteins by an endogenous membrane-bound protein kinase. Possible involvement in the regulation of insulin-stimulated glucose transport. J Biol Chem. 1974 Nov 10;249(21):6854–6865. [PubMed] [Google Scholar]
- DOLE V. P., MEINERTZ H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960 Sep;235:2595–2599. [PubMed] [Google Scholar]
- Degerman E., Belfrage P., Manganiello V. C. Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). J Biol Chem. 1997 Mar 14;272(11):6823–6826. doi: 10.1074/jbc.272.11.6823. [DOI] [PubMed] [Google Scholar]
- Elberg G., He Z., Li J., Sekar N., Shechter Y. Vanadate activates membranous nonreceptor protein tyrosine kinase in rat adipocytes. Diabetes. 1997 Nov;46(11):1684–1690. doi: 10.2337/diab.46.11.1684. [DOI] [PubMed] [Google Scholar]
- Goldfine A. B., Simonson D. C., Folli F., Patti M. E., Kahn C. R. In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. Mol Cell Biochem. 1995 Dec 6;153(1-2):217–231. doi: 10.1007/BF01075941. [DOI] [PubMed] [Google Scholar]
- Hadari Y. R., Tzahar E., Nadiv O., Rothenberg P., Roberts C. T., Jr, LeRoith D., Yarden Y., Zick Y. Insulin and insulinomimetic agents induce activation of phosphatidylinositol 3'-kinase upon its association with pp185 (IRS-1) in intact rat livers. J Biol Chem. 1992 Sep 5;267(25):17483–17486. [PubMed] [Google Scholar]
- Halberstam M., Cohen N., Shlimovich P., Rossetti L., Shamoon H. Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes. 1996 May;45(5):659–666. doi: 10.2337/diab.45.5.659. [DOI] [PubMed] [Google Scholar]
- Heyliger C. E., Tahiliani A. G., McNeill J. H. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science. 1985 Mar 22;227(4693):1474–1477. doi: 10.1126/science.3156405. [DOI] [PubMed] [Google Scholar]
- Honnor R. C., Dhillon G. S., Londos C. cAMP-dependent protein kinase and lipolysis in rat adipocytes. I. Cell preparation, manipulation, and predictability in behavior. J Biol Chem. 1985 Dec 5;260(28):15122–15129. [PubMed] [Google Scholar]
- Huyer G., Liu S., Kelly J., Moffat J., Payette P., Kennedy B., Tsaprailis G., Gresser M. J., Ramachandran C. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem. 1997 Jan 10;272(2):843–851. doi: 10.1074/jbc.272.2.843. [DOI] [PubMed] [Google Scholar]
- Ida M., Imai K., Hashimoto S., Kawashima H. Pervanadate stimulation of wortmannin-sensitive and -resistant 2-deoxyglucose transport in adipocytes. Biochem Pharmacol. 1996 Apr 26;51(8):1061–1067. doi: 10.1016/0006-2952(95)02438-7. [DOI] [PubMed] [Google Scholar]
- Inoue G., Cheatham B., Emkey R., Kahn C. R. Dynamics of insulin signaling in 3T3-L1 adipocytes. Differential compartmentalization and trafficking of insulin receptor substrate (IRS)-1 and IRS-2. J Biol Chem. 1998 May 8;273(19):11548–11555. doi: 10.1074/jbc.273.19.11548. [DOI] [PubMed] [Google Scholar]
- Issad T., Combettes M., Ferre P. Isoproterenol inhibits insulin-stimulated tyrosine phosphorylation of the insulin receptor without increasing its serine/threonine phosphorylation. Eur J Biochem. 1995 Nov 15;234(1):108–115. doi: 10.1111/j.1432-1033.1995.108_c.x. [DOI] [PubMed] [Google Scholar]
- Kavanaugh W. M., Klippel A., Escobedo J. A., Williams L. T. Modification of the 85-kilodalton subunit of phosphatidylinositol-3 kinase in platelet-derived growth factor-stimulated cells. Mol Cell Biol. 1992 Aug;12(8):3415–3424. doi: 10.1128/mcb.12.8.3415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J., Elberg G., Sekar N., bin He Z., Shechter Y. Antilipolytic actions of vanadate and insulin in rat adipocytes mediated by distinctly different mechanisms. Endocrinology. 1997 Jun;138(6):2274–2279. doi: 10.1210/endo.138.6.5158. [DOI] [PubMed] [Google Scholar]
- Lönnroth P., Eriksson J. W., Posner B. I., Smith U. Peroxovanadate but not vanadate exerts insulin-like effects in human adipocytes. Diabetologia. 1993 Feb;36(2):113–116. doi: 10.1007/BF00400690. [DOI] [PubMed] [Google Scholar]
- Navé B. T., Haigh R. J., Hayward A. C., Siddle K., Shepherd P. R. Compartment-specific regulation of phosphoinositide 3-kinase by platelet-derived growth factor and insulin in 3T3-L1 adipocytes. Biochem J. 1996 Aug 15;318(Pt 1):55–60. doi: 10.1042/bj3180055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogihara T., Shin B. C., Anai M., Katagiri H., Inukai K., Funaki M., Fukushima Y., Ishihara H., Takata K., Kikuchi M. Insulin receptor substrate (IRS)-2 is dephosphorylated more rapidly than IRS-1 via its association with phosphatidylinositol 3-kinase in skeletal muscle cells. J Biol Chem. 1997 May 9;272(19):12868–12873. doi: 10.1074/jbc.272.19.12868. [DOI] [PubMed] [Google Scholar]
- Ohsaka Y., Tokumitsu Y., Nomura Y. Suppression of insulin-stimulated phosphatidylinositol 3-kinase activity by the beta3-adrenoceptor agonist CL316243 in rat adipocytes. FEBS Lett. 1997 Feb 3;402(2-3):246–250. doi: 10.1016/s0014-5793(97)00007-0. [DOI] [PubMed] [Google Scholar]
- Okada T., Kawano Y., Sakakibara T., Hazeki O., Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem. 1994 Feb 4;269(5):3568–3573. [PubMed] [Google Scholar]
- Posner B. I., Faure R., Burgess J. W., Bevan A. P., Lachance D., Zhang-Sun G., Fantus I. G., Ng J. B., Hall D. A., Lum B. S. Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J Biol Chem. 1994 Feb 11;269(6):4596–4604. [PubMed] [Google Scholar]
- RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
- Rahn T., Ridderstråle M., Tornqvist H., Manganiello V., Fredrikson G., Belfrage P., Degerman E. Essential role of phosphatidylinositol 3-kinase in insulin-induced activation and phosphorylation of the cGMP-inhibited cAMP phosphodiesterase in rat adipocytes. Studies using the selective inhibitor wortmannin. FEBS Lett. 1994 Aug 22;350(2-3):314–318. doi: 10.1016/0014-5793(94)00797-7. [DOI] [PubMed] [Google Scholar]
- Rahn T., Rönnstrand L., Leroy M. J., Wernstedt C., Tornqvist H., Manganiello V. C., Belfrage P., Degerman E. Identification of the site in the cGMP-inhibited phosphodiesterase phosphorylated in adipocytes in response to insulin and isoproterenol. J Biol Chem. 1996 May 10;271(19):11575–11580. doi: 10.1074/jbc.271.19.11575. [DOI] [PubMed] [Google Scholar]
- Reaven G. M. The fourth musketeer--from Alexandre Dumas to Claude Bernard. Diabetologia. 1995 Jan;38(1):3–13. doi: 10.1007/BF02369347. [DOI] [PubMed] [Google Scholar]
- Sekar N., Li J., Shechter Y. Vanadium salts as insulin substitutes: mechanisms of action, a scientific and therapeutic tool in diabetes mellitus research. Crit Rev Biochem Mol Biol. 1996 Dec;31(5-6):339–359. doi: 10.3109/10409239609108721. [DOI] [PubMed] [Google Scholar]
- Shisheva A., Shechter Y. Quercetin selectively inhibits insulin receptor function in vitro and the bioresponses of insulin and insulinomimetic agents in rat adipocytes. Biochemistry. 1992 Sep 1;31(34):8059–8063. doi: 10.1021/bi00149a041. [DOI] [PubMed] [Google Scholar]
- Shisheva A., Shechter Y. Role of cytosolic tyrosine kinase in mediating insulin-like actions of vanadate in rat adipocytes. J Biol Chem. 1993 Mar 25;268(9):6463–6469. [PubMed] [Google Scholar]
- WIELAND O. Eine enzymatische Methode zur Bestimmung von Glycerin. Biochem Z. 1957;329(4):313–319. [PubMed] [Google Scholar]
- White M. F. The insulin signalling system and the IRS proteins. Diabetologia. 1997 Jul;40 (Suppl 2):S2–17. doi: 10.1007/s001250051387. [DOI] [PubMed] [Google Scholar]
- Whitman M., Kaplan D. R., Schaffhausen B., Cantley L., Roberts T. M. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature. 1985 May 16;315(6016):239–242. doi: 10.1038/315239a0. [DOI] [PubMed] [Google Scholar]