Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 15;339(Pt 2):343–350.

A new scorpion toxin (BmK-PL) stimulates Ca2+-release channel activity of the skeletal-muscle ryanodine receptor by an indirect mechanism.

A Kuniyasu 1, S Kawano 1, Y Hirayama 1, Y H Ji 1, K Xu 1, M Ohkura 1, K Furukawa 1, Y Ohizumi 1, M Hiraoka 1, H Nakayama 1
PMCID: PMC1220163  PMID: 10191265

Abstract

A peptide toxin isolated from the Chinese scorpion Buthus martensi Karsch (BmK-PL) stimulated Ca2+-release channel activity in both triad membranes and reconstituted ryanodine receptors partially purified from rabbit skeletal muscle. In [3H]ryanodine binding experiments, the toxin increased the affinity of ryanodine for the receptor, from a Kd of 24.3 nM to 2.9 nM, which is an enhancement similar to that seen with known receptor activators, such as ATP and high concentrations of KCl. In contrast, toxin enhancement was not observed with purified receptors, although intrinsic binding activity and stimulation by the conventional receptor activators were retained. In single channel recordings of Ca2+-release activity, the toxin increased the open channel probability (Po) from 0.019 to 0.043 (226% of control) in triad preparations. Further toxin enhancement of Po from 0.07 to 0.37 (529% of control) was observed using partially-purified receptors in the presence of ATP. When purified receptors were assayed in the presence of ATP, however, they showed a high value of Po (0.33) and no further increase was observed following application of the toxin. Results derived from two different experimental methods consistently suggest that a molecule(s) required for toxin-induced enhancement is absent from the purified receptor preparation. Western blot analysis of receptors prepared using three different protocols showed that triadin was missing from the purified receptor preparation. The scorpion toxin minimally enhanced Ca2+-release channel activity of cardiac preparations. From these results, we conclude that the toxin preferentially increases the activity of skeletal-muscle ryanodine receptors by an indirect mechanism, possibly binding to associated protein molecule(s). Triadin is a strong candidate for such a molecule.

Full Text

The Full Text of this article is available as a PDF (216.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Block B. A., Imagawa T., Campbell K. P., Franzini-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988 Dec;107(6 Pt 2):2587–2600. doi: 10.1083/jcb.107.6.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Caswell A. H., Brandt N. R., Brunschwig J. P., Purkerson S. Localization and partial characterization of the oligomeric disulfide-linked molecular weight 95,000 protein (triadin) which binds the ryanodine and dihydropyridine receptors in skeletal muscle triadic vesicles. Biochemistry. 1991 Jul 30;30(30):7507–7513. doi: 10.1021/bi00244a020. [DOI] [PubMed] [Google Scholar]
  4. Catterall W. A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol. 1980;20:15–43. doi: 10.1146/annurev.pa.20.040180.000311. [DOI] [PubMed] [Google Scholar]
  5. Chu A., Díaz-Muñoz M., Hawkes M. J., Brush K., Hamilton S. L. Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel. Mol Pharmacol. 1990 May;37(5):735–741. [PubMed] [Google Scholar]
  6. Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
  7. Fliegel L., Ohnishi M., Carpenter M. R., Khanna V. K., Reithmeier R. A., MacLennan D. H. Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1167–1171. doi: 10.1073/pnas.84.5.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fox J. W., Elzinga M., Tu A. T. Amino acid sequence and disulfide bond assignment of myotoxin a isolated from the venom of Prairie rattlesnake (Crotalus viridis viridis). Biochemistry. 1979 Feb 20;18(4):678–684. doi: 10.1021/bi00571a020. [DOI] [PubMed] [Google Scholar]
  9. Furukawa K., Funayama K., Ohkura M., Oshima Y., Tu A. T., Ohizumi Y. Ca2+ release induced by myotoxin alpha, a radio-labellable probe having novel Ca2+ release properties in sarcoplasmic reticulum. Br J Pharmacol. 1994 Sep;113(1):233–239. doi: 10.1111/j.1476-5381.1994.tb16199.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garcia-Calvo M., Leonard R. J., Novick J., Stevens S. P., Schmalhofer W., Kaczorowski G. J., Garcia M. L. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem. 1993 Sep 5;268(25):18866–18874. [PubMed] [Google Scholar]
  11. Garcia M. L., Garcia-Calvo M., Hidalgo P., Lee A., MacKinnon R. Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom. Biochemistry. 1994 Jun 7;33(22):6834–6839. doi: 10.1021/bi00188a012. [DOI] [PubMed] [Google Scholar]
  12. Gimenez-Gallego G., Navia M. A., Reuben J. P., Katz G. M., Kaczorowski G. J., Garcia M. L. Purification, sequence, and model structure of charybdotoxin, a potent selective inhibitor of calcium-activated potassium channels. Proc Natl Acad Sci U S A. 1988 May;85(10):3329–3333. doi: 10.1073/pnas.85.10.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guo W., Jorgensen A. O., Jones L. R., Campbell K. P. Biochemical characterization and molecular cloning of cardiac triadin. J Biol Chem. 1996 Jan 5;271(1):458–465. doi: 10.1074/jbc.271.1.458. [DOI] [PubMed] [Google Scholar]
  14. Imagawa T., Smith J. S., Coronado R., Campbell K. P. Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel. J Biol Chem. 1987 Dec 5;262(34):16636–16643. [PubMed] [Google Scholar]
  15. Imagawa T., Takasago T., Shigekawa M. Cardiac ryanodine receptor is absent in type I slow skeletal muscle fibers: immunochemical and ryanodine binding studies. J Biochem. 1989 Aug;106(2):342–348. doi: 10.1093/oxfordjournals.jbchem.a122855. [DOI] [PubMed] [Google Scholar]
  16. Inui M., Saito A., Fleischer S. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J Biol Chem. 1987 Nov 15;262(32):15637–15642. [PubMed] [Google Scholar]
  17. Jones L. R., Zhang L., Sanborn K., Jorgensen A. O., Kelley J. Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum. J Biol Chem. 1995 Dec 22;270(51):30787–30796. doi: 10.1074/jbc.270.51.30787. [DOI] [PubMed] [Google Scholar]
  18. Knudson C. M., Stang K. K., Jorgensen A. O., Campbell K. P. Biochemical characterization of ultrastructural localization of a major junctional sarcoplasmic reticulum glycoprotein (triadin). J Biol Chem. 1993 Jun 15;268(17):12637–12645. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lai F. A., Erickson H. P., Rousseau E., Liu Q. Y., Meissner G. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature. 1988 Jan 28;331(6154):315–319. doi: 10.1038/331315a0. [DOI] [PubMed] [Google Scholar]
  21. Lindsay A. R., Williams A. J. Functional characterisation of the ryanodine receptor purified from sheep cardiac muscle sarcoplasmic reticulum. Biochim Biophys Acta. 1991 Apr 26;1064(1):89–102. doi: 10.1016/0005-2736(91)90415-5. [DOI] [PubMed] [Google Scholar]
  22. Mitchell R. D., Palade P., Fleischer S. Purification of morphologically intact triad structures from skeletal muscle. J Cell Biol. 1983 Apr;96(4):1008–1016. doi: 10.1083/jcb.96.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mitchell R. D., Simmerman H. K., Jones L. R. Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J Biol Chem. 1988 Jan 25;263(3):1376–1381. [PubMed] [Google Scholar]
  24. Miyawaki A., Furuichi T., Ryou Y., Yoshikawa S., Nakagawa T., Saitoh T., Mikoshiba K. Structure-function relationships of the mouse inositol 1,4,5-trisphosphate receptor. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4911–4915. doi: 10.1073/pnas.88.11.4911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Näbauer M., Callewaert G., Cleemann L., Morad M. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science. 1989 May 19;244(4906):800–803. doi: 10.1126/science.2543067. [DOI] [PubMed] [Google Scholar]
  26. Ohkura M., Furukawa K., Fujimori H., Kuruma A., Kawano S., Hiraoka M., Kuniyasu A., Nakayama H., Ohizumi Y. Dual regulation of the skeletal muscle ryanodine receptor by triadin and calsequestrin. Biochemistry. 1998 Sep 15;37(37):12987–12993. doi: 10.1021/bi972803d. [DOI] [PubMed] [Google Scholar]
  27. Ohkura M., Ide T., Furukawa K., Kawasaki T., Kasai M., Ohizumi Y. Calsequestrin is essential for the Ca2+ release induced by myotoxin alpha in skeletal muscle sarcoplasmic reticulum. Can J Physiol Pharmacol. 1995 Aug;73(8):1181–1185. doi: 10.1139/y95-167. [DOI] [PubMed] [Google Scholar]
  28. Rochat H., Bernard P., Couraud F. Scorpion toxins: chemistry and mode of action. Adv Cytopharmacol. 1979;3:325–334. [PubMed] [Google Scholar]
  29. Ríos E., Pizarro G. Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev. 1991 Jul;71(3):849–908. doi: 10.1152/physrev.1991.71.3.849. [DOI] [PubMed] [Google Scholar]
  30. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  31. Valdivia H. H., Fuentes O., el-Hayek R., Morrissette J., Coronado R. Activation of the ryanodine receptor Ca2+ release channel of sarcoplasmic reticulum by a novel scorpion venom. J Biol Chem. 1991 Oct 15;266(29):19135–19138. [PubMed] [Google Scholar]
  32. Valdivia H. H., Kirby M. S., Lederer W. J., Coronado R. Scorpion toxins targeted against the sarcoplasmic reticulum Ca(2+)-release channel of skeletal and cardiac muscle. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12185–12189. doi: 10.1073/pnas.89.24.12185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yano K., Zarain-Herzberg A. Sarcoplasmic reticulum calsequestrins: structural and functional properties. Mol Cell Biochem. 1994 Jun 15;135(1):61–70. doi: 10.1007/BF00925961. [DOI] [PubMed] [Google Scholar]
  34. Zamudio F. Z., Gurrola G. B., Arévalo C., Sreekumar R., Walker J. W., Valdivia H. H., Possani L. D. Primary structure and synthesis of Imperatoxin A (IpTx(a)), a peptide activator of Ca2+ release channels/ryanodine receptors. FEBS Lett. 1997 Apr 1;405(3):385–389. doi: 10.1016/s0014-5793(97)00227-5. [DOI] [PubMed] [Google Scholar]
  35. Zhang L., Kelley J., Schmeisser G., Kobayashi Y. M., Jones L. R. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem. 1997 Sep 12;272(37):23389–23397. doi: 10.1074/jbc.272.37.23389. [DOI] [PubMed] [Google Scholar]
  36. el-Hayek R., Lokuta A. J., Arévalo C., Valdivia H. H. Peptide probe of ryanodine receptor function. Imperatoxin A, a peptide from the venom of the scorpion Pandinus imperator, selectively activates skeletal-type ryanodine receptor isoforms. J Biol Chem. 1995 Dec 1;270(48):28696–28704. doi: 10.1074/jbc.270.48.28696. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES