Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 15;339(Pt 2):381–386.

Biophysical activity of an artificial surfactant containing an analogue of surfactant protein (SP)-C and native SP-B.

M Palmblad 1, J Johansson 1, B Robertson 1, T Curstedt 1
PMCID: PMC1220168  PMID: 10191270

Abstract

Natural surfactant preparations containing phospholipids and the hydrophobic surfactant proteins B and C (SP-B and SP-C) are effective in the treatment of respiratory distress syndrome in premature infants. The limited supply, and the risk of infectious agents and immunological reactions have promoted the evaluation of synthetic peptides in surfactant preparations. However, the folding of synthetic SP-C into an alpha-helix is inefficient and alpha-helical SP-C analogues with Val-->Leu substitutions form oligomers. In order to circumvent these problems we have synthesized an SP-C analogue, named SP-C(LKS), which differs from SP-C mainly by the exchange of most of the Val residues in positions 16-28 with Leu residues to promote an alpha-helical conformation, and by the introduction of Lys residues at positions 17, 22 and 27 in order to locate positive charges around the helical circumference and thereby avoid self polymerization. CD spectroscopy showed a spectrum typical for alpha-helical peptides and SDS/PAGE disclosed a single band. The biophysical activity of artificial surfactant preparations containing SP-C(LKS) and phospholipids, with and without native SP-B, was measured using a Wilhelmy balance and a pulsating bubble surfactometer. SP-C(LKS) (3%, w/w) in a mixture of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/phosphatidylglycerol/palmitic acid (68:22:9, by wt.) suspended in 150 mM NaCl, showed rapid spreading at the air-liquid interface and produced a surface tension of <1 mN/m at minimum bubble size (gammamin) and 42 mN/m at maximum bubble size (gammamax) in the pulsating bubble surfactometer. The addition of 2% (w/w) SP-B to the preparation reduced the maximum surface tension to 33-35 mN/m, i.e. both gammamin and gammamax values were similar to those of natural surfactant preparations. Optimal in vitro characteristics were also obtained from a preparation containing SP-C(LKS), SP-B, DPPC and phosphatidylglycerol, i.e. when palmitic acid was omitted from the lipid mixture. SP-B containing surfactant preparations made up in Hepes buffer at pH 6.9, instead of in 150 mM NaCl, had similar biophysical activity provided that palmitic acid was omitted, but decreased activity in the presence of palmitic acid.

Full Text

The Full Text of this article is available as a PDF (137.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson M., Curstedt T., Jörnvall H., Johansson J. An amphipathic helical motif common to tumourolytic polypeptide NK-lysin and pulmonary surfactant polypeptide SP-B. FEBS Lett. 1995 Apr 10;362(3):328–332. doi: 10.1016/0014-5793(95)00268-e. [DOI] [PubMed] [Google Scholar]
  2. Barrow C. J., Yasuda A., Kenny P. T., Zagorski M. G. Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer's disease. Analysis of circular dichroism spectra. J Mol Biol. 1992 Jun 20;225(4):1075–1093. doi: 10.1016/0022-2836(92)90106-t. [DOI] [PubMed] [Google Scholar]
  3. Cochrane C. G., Revak S. D. Pulmonary surfactant protein B (SP-B): structure-function relationships. Science. 1991 Oct 25;254(5031):566–568. doi: 10.1126/science.1948032. [DOI] [PubMed] [Google Scholar]
  4. Curstedt T., Johansson J., Persson P., Eklund A., Robertson B., Löwenadler B., Jörnvall H. Hydrophobic surfactant-associated polypeptides: SP-C is a lipopeptide with two palmitoylated cysteine residues, whereas SP-B lacks covalently linked fatty acyl groups. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2985–2989. doi: 10.1073/pnas.87.8.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Curstedt T., Jörnvall H., Robertson B., Bergman T., Berggren P. Two hydrophobic low-molecular-mass protein fractions of pulmonary surfactant. Characterization and biophysical activity. Eur J Biochem. 1987 Oct 15;168(2):255–262. doi: 10.1111/j.1432-1033.1987.tb13414.x. [DOI] [PubMed] [Google Scholar]
  6. Gustafsson M., Curstedt T., Jörnvall H., Johansson J. Reverse-phase HPLC of the hydrophobic pulmonary surfactant proteins: detection of a surfactant protein C isoform containing Nepsilon-palmitoyl-lysine. Biochem J. 1997 Sep 15;326(Pt 3):799–806. doi: 10.1042/bj3260799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gustafsson M., Vandenbussche G., Curstedt T., Ruysschaert J. M., Johansson J. The 21-residue surfactant peptide (LysLeu4)4Lys(KL4) is a transmembrane alpha-helix with a mixed nonpolar/polar surface. FEBS Lett. 1996 Apr 15;384(2):185–188. doi: 10.1016/0014-5793(96)00290-6. [DOI] [PubMed] [Google Scholar]
  8. Johansson J., Curstedt T., Jörnvall H. Surfactant protein B: disulfide bridges, structural properties, and kringle similarities. Biochemistry. 1991 Jul 16;30(28):6917–6921. doi: 10.1021/bi00242a015. [DOI] [PubMed] [Google Scholar]
  9. Johansson J., Curstedt T. Molecular structures and interactions of pulmonary surfactant components. Eur J Biochem. 1997 Mar 15;244(3):675–693. doi: 10.1111/j.1432-1033.1997.00675.x. [DOI] [PubMed] [Google Scholar]
  10. Johansson J., Curstedt T., Robertson B. Synthetic protein analogues in artificial surfactants. Acta Paediatr. 1996 Jun;85(6):642–646. doi: 10.1111/j.1651-2227.1996.tb14114.x. [DOI] [PubMed] [Google Scholar]
  11. Johansson J., Jörnvall H., Eklund A., Christensen N., Robertson B., Curstedt T. Hydrophobic 3.7 kDa surfactant polypeptide: structural characterization of the human and bovine forms. FEBS Lett. 1988 May 9;232(1):61–64. doi: 10.1016/0014-5793(88)80386-7. [DOI] [PubMed] [Google Scholar]
  12. Johansson J., Nilsson G., Strömberg R., Robertson B., Jörnvall H., Curstedt T. Secondary structure and biophysical activity of synthetic analogues of the pulmonary surfactant polypeptide SP-C. Biochem J. 1995 Apr 15;307(Pt 2):535–541. doi: 10.1042/bj3070535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johansson J., Szyperski T., Curstedt T., Wüthrich K. The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a valyl-rich alpha-helix. Biochemistry. 1994 May 17;33(19):6015–6023. doi: 10.1021/bi00185a042. [DOI] [PubMed] [Google Scholar]
  14. Kent S. B. Chemical synthesis of peptides and proteins. Annu Rev Biochem. 1988;57:957–989. doi: 10.1146/annurev.bi.57.070188.004521. [DOI] [PubMed] [Google Scholar]
  15. Liepinsh E., Andersson M., Ruysschaert J. M., Otting G. Saposin fold revealed by the NMR structure of NK-lysin. Nat Struct Biol. 1997 Oct;4(10):793–795. doi: 10.1038/nsb1097-793. [DOI] [PubMed] [Google Scholar]
  16. Nilsson G., Gustafsson M., Vandenbussche G., Veldhuizen E., Griffiths W. J., Sjövall J., Haagsman H. P., Ruysschaert J. M., Robertson B., Curstedt T. Synthetic peptide-containing surfactants--evaluation of transmembrane versus amphipathic helices and surfactant protein C poly-valyl to poly-leucyl substitution. Eur J Biochem. 1998 Jul 1;255(1):116–124. doi: 10.1046/j.1432-1327.1998.2550116.x. [DOI] [PubMed] [Google Scholar]
  17. Pérez-Gil J., Casals C., Marsh D. Interactions of hydrophobic lung surfactant proteins SP-B and SP-C with dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol bilayers studied by electron spin resonance spectroscopy. Biochemistry. 1995 Mar 28;34(12):3964–3971. doi: 10.1021/bi00012a014. [DOI] [PubMed] [Google Scholar]
  18. Revak S. D., Merritt T. A., Cochrane C. G., Heldt G. P., Alberts M. S., Anderson D. W., Kheiter A. Efficacy of synthetic peptide-containing surfactant in the treatment of respiratory distress syndrome in preterm infant rhesus monkeys. Pediatr Res. 1996 Apr;39(4 Pt 1):715–724. doi: 10.1203/00006450-199604000-00025. [DOI] [PubMed] [Google Scholar]
  19. Schürch S., Qanbar R., Bachofen H., Possmayer F. The surface-associated surfactant reservoir in the alveolar lining. Biol Neonate. 1995;67 (Suppl 1):61–76. doi: 10.1159/000244207. [DOI] [PubMed] [Google Scholar]
  20. Takahashi A., Nemoto T., Fujiwara T. Biophysical properties of protein-free, totally synthetic pulmonary surfactants, ALEC and Exosurf, in comparison with surfactant TA. Acta Paediatr Jpn. 1994 Dec;36(6):613–618. doi: 10.1111/j.1442-200x.1994.tb03255.x. [DOI] [PubMed] [Google Scholar]
  21. Takei T., Hashimoto Y., Ohtsubo E., Sakai K., Ohkawa H. Characterization of poly-leucine substituted analogues of the human surfactant protein SP-C. Biol Pharm Bull. 1996 Dec;19(12):1550–1555. doi: 10.1248/bpb.19.1550. [DOI] [PubMed] [Google Scholar]
  22. Tanaka Y., Takei T., Aiba T., Masuda K., Kiuchi A., Fujiwara T. Development of synthetic lung surfactants. J Lipid Res. 1986 May;27(5):475–485. [PubMed] [Google Scholar]
  23. Vandenbussche G., Clercx A., Curstedt T., Johansson J., Jörnvall H., Ruysschaert J. M. Structure and orientation of the surfactant-associated protein C in a lipid bilayer. Eur J Biochem. 1992 Jan 15;203(1-2):201–209. doi: 10.1111/j.1432-1033.1992.tb19848.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES