Abstract
The purpose of this work was to investigate the role of N-glycosylation in the expression and pharmacological properties of the the rat AT1a angiotensin II (AII) receptor. Glycosylation-site suppression was carried out by site-directed mutagenesis (Asn-->Gln) of Asn176 and Asn188 (located on the second extracellular loop) and by the removal of Asn4 at the N-terminal end combined with the replacement of the first four amino acids by a 10 amino acid peptide epitope (c-Myc). We generated seven possible N-glycosylation-site-defective mutants, all tagged at their C-terminal ends with the c-Myc epitope. This double-tagging strategy, associated with photoaffinity labelling, allowed evaluation of the molecular masses and immunocytochemical cellular localization of the various receptors transiently expressed in COS-7 cells. We showed that: (i) each of the three N-glycosylation sites are utilized in COS-7 cells; (ii) the mutant with three defective N-glycosylation sites was not (or was very inefficiently) expressed at the plasma membrane and accumulated inside the cell at the perinuclear zone; (iii) the preservation of two sites allowed normal receptor delivery to the plasma membrane, the presence of only Asn176 ensuring a behaviour similar to that of the wild-type receptor; and (iv) all expressed receptors displayed unchanged pharmacological properties (Kd for 125I-sarcosine1-AII; sarcosine1-AII-induced inositol phosphate production). These results demonstrate that N-glycosylation is required for the AT1 receptor expression. They are discussed in the light of current knowledge of membrane-protein maturation and future prospects of receptor overexpression for structural studies.
Full Text
The Full Text of this article is available as a PDF (211.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bisello A., Greenberg Z., Behar V., Rosenblatt M., Suva L. J., Chorev M. Role of glycosylation in expression and function of the human parathyroid hormone/parathyroid hormone-related protein receptor. Biochemistry. 1996 Dec 10;35(49):15890–15895. doi: 10.1021/bi962111+. [DOI] [PubMed] [Google Scholar]
- Boege F., Ward M., Jürss R., Hekman M., Helmreich E. J. Role of glycosylation for beta 2-adrenoceptor function in A431 cells. J Biol Chem. 1988 Jun 25;263(18):9040–9049. [PubMed] [Google Scholar]
- Bonnafous J. C., Tence M., Seyer R., Marie J., Aumelas A., Jard S. New probes for angiotensin II receptors. Synthesis, radioiodination and biological properties of biotinylated and haptenated angiotensin derivatives. Biochem J. 1988 May 1;251(3):873–880. doi: 10.1042/bj2510873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol. 1997 May;7(5):193–200. doi: 10.1016/S0962-8924(97)01032-5. [DOI] [PubMed] [Google Scholar]
- Carson M. C., Harper C. M., Baukal A. J., Aguilera G., Catt K. J. Physicochemical characterization of photoaffinity-labeled angiotensin II receptors. Mol Endocrinol. 1987 Feb;1(2):147–153. doi: 10.1210/mend-1-2-147. [DOI] [PubMed] [Google Scholar]
- Couvineau A., Fabre C., Gaudin P., Maoret J. J., Laburthe M. Mutagenesis of N-glycosylation sites in the human vasoactive intestinal peptide 1 receptor. Evidence that asparagine 58 or 69 is crucial for correct delivery of the receptor to plasma membrane. Biochemistry. 1996 Feb 13;35(6):1745–1752. doi: 10.1021/bi952022h. [DOI] [PubMed] [Google Scholar]
- Cvejic S., Devi L. A. Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem. 1997 Oct 24;272(43):26959–26964. doi: 10.1074/jbc.272.43.26959. [DOI] [PubMed] [Google Scholar]
- Davidson J. S., Flanagan C. A., Zhou W., Becker I. I., Elario R., Emeran W., Sealfon S. C., Millar R. P. Identification of N-glycosylation sites in the gonadotropin-releasing hormone receptor: role in receptor expression but not ligand binding. Mol Cell Endocrinol. 1995 Feb;107(2):241–245. doi: 10.1016/0303-7207(94)03449-4. [DOI] [PubMed] [Google Scholar]
- Desarnaud F., Marie J., Lombard C., Larguier R., Seyer R., Lorca T., Jard S., Bonnafous J. C. Deglycosylation and fragmentation of purified rat liver angiotensin II receptor: application to the mapping of hormone-binding domains. Biochem J. 1993 Jan 1;289(Pt 1):289–297. doi: 10.1042/bj2890289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis L., Clauser E., Morgan D. O., Edery M., Roth R. A., Rutter W. J. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell. 1986 Jun 6;45(5):721–732. doi: 10.1016/0092-8674(86)90786-5. [DOI] [PubMed] [Google Scholar]
- Evan G. I., Lewis G. K., Ramsay G., Bishop J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. doi: 10.1128/mcb.5.12.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukushima Y., Oka Y., Saitoh T., Katagiri H., Asano T., Matsuhashi N., Takata K., van Breda E., Yazaki Y., Sugano K. Structural and functional analysis of the canine histamine H2 receptor by site-directed mutagenesis: N-glycosylation is not vital for its action. Biochem J. 1995 Sep 1;310(Pt 2):553–558. doi: 10.1042/bj3100553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gahmberg C. G., Tolvanen M. Why mammalian cell surface proteins are glycoproteins. Trends Biochem Sci. 1996 Aug;21(8):308–311. [PubMed] [Google Scholar]
- George S. T., Ruoho A. E., Malbon C. C. N-glycosylation in expression and function of beta-adrenergic receptors. J Biol Chem. 1986 Dec 15;261(35):16559–16564. [PubMed] [Google Scholar]
- Grisshammer R., Tate C. G. Overexpression of integral membrane proteins for structural studies. Q Rev Biophys. 1995 Aug;28(3):315–422. doi: 10.1017/s0033583500003504. [DOI] [PubMed] [Google Scholar]
- Groblewski T., Maigret B., Larguier R., Lombard C., Bonnafous J. C., Marie J. Mutation of Asn111 in the third transmembrane domain of the AT1A angiotensin II receptor induces its constitutive activation. J Biol Chem. 1997 Jan 17;272(3):1822–1826. doi: 10.1074/jbc.272.3.1822. [DOI] [PubMed] [Google Scholar]
- Guillemette G., Guillon G., Marie J., Balestre M. N., Escher E., Jard S. High yield photoaffinity labeling of angiotensin II receptors. Mol Pharmacol. 1986 Dec;30(6):544–551. [PubMed] [Google Scholar]
- Hebert T. E., Moffett S., Morello J. P., Loisel T. P., Bichet D. G., Barret C., Bouvier M. A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem. 1996 Jul 5;271(27):16384–16392. doi: 10.1074/jbc.271.27.16384. [DOI] [PubMed] [Google Scholar]
- Holst B., Bruun A. W., Kielland-Brandt M. C., Winther J. R. Competition between folding and glycosylation in the endoplasmic reticulum. EMBO J. 1996 Jul 15;15(14):3538–3546. [PMC free article] [PubMed] [Google Scholar]
- Hunyady L., Balla T., Catt K. J. The ligand binding site of the angiotensin AT1 receptor. Trends Pharmacol Sci. 1996 Apr;17(4):135–140. doi: 10.1016/0165-6147(96)81588-4. [DOI] [PubMed] [Google Scholar]
- Inoue Y., Nakamura N., Inagami T. A review of mutagenesis studies of angiotensin II type 1 receptor, the three-dimensional receptor model in search of the agonist and antagonist binding site and the hypothesis of a receptor activation mechanism. J Hypertens. 1997 Jul;15(7):703–714. doi: 10.1097/00004872-199715070-00001. [DOI] [PubMed] [Google Scholar]
- Joseph M. P., Maigret B., Bonnafous J. C., Marie J., Scheraga H. A. A computer modeling postulated mechanism for angiotensin II receptor activation. J Protein Chem. 1995 Jul;14(5):381–398. doi: 10.1007/BF01886795. [DOI] [PubMed] [Google Scholar]
- Kambayashi Y., Bardhan S., Takahashi K., Tsuzuki S., Inui H., Hamakubo T., Inagami T. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem. 1993 Nov 25;268(33):24543–24546. [PubMed] [Google Scholar]
- Kaushal S., Ridge K. D., Khorana H. G. Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4024–4028. doi: 10.1073/pnas.91.9.4024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiefer H., Krieger J., Olszewski J. D., Von Heijne G., Prestwich G. D., Breer H. Expression of an olfactory receptor in Escherichia coli: purification, reconstitution, and ligand binding. Biochemistry. 1996 Dec 17;35(50):16077–16084. doi: 10.1021/bi9612069. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lis H., Sharon N. Protein glycosylation. Structural and functional aspects. Eur J Biochem. 1993 Nov 15;218(1):1–27. doi: 10.1111/j.1432-1033.1993.tb18347.x. [DOI] [PubMed] [Google Scholar]
- Maggio R., Barbier P., Fornai F., Corsini G. U. Functional role of the third cytoplasmic loop in muscarinic receptor dimerization. J Biol Chem. 1996 Dec 6;271(49):31055–31060. doi: 10.1074/jbc.271.49.31055. [DOI] [PubMed] [Google Scholar]
- Marie J., Seyer R., Lombard C., Desarnaud F., Aumelas A., Jard S., Bonnafous J. C. Affinity chromatography purification of angiotensin II receptor using photoactivable biotinylated probes. Biochemistry. 1990 Sep 25;29(38):8943–8950. doi: 10.1021/bi00490a009. [DOI] [PubMed] [Google Scholar]
- Menke J. G., Borkowski J. A., Bierilo K. K., MacNeil T., Derrick A. W., Schneck K. A., Ransom R. W., Strader C. D., Linemeyer D. L., Hess J. F. Expression cloning of a human B1 bradykinin receptor. J Biol Chem. 1994 Aug 26;269(34):21583–21586. [PubMed] [Google Scholar]
- Mukoyama M., Nakajima M., Horiuchi M., Sasamura H., Pratt R. E., Dzau V. J. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem. 1993 Nov 25;268(33):24539–24542. [PubMed] [Google Scholar]
- Murphy T. J., Alexander R. W., Griendling K. K., Runge M. S., Bernstein K. E. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991 May 16;351(6323):233–236. doi: 10.1038/351233a0. [DOI] [PubMed] [Google Scholar]
- Noda K., Feng Y. H., Liu X. P., Saad Y., Husain A., Karnik S. S. The active state of the AT1 angiotensin receptor is generated by angiotensin II induction. Biochemistry. 1996 Dec 24;35(51):16435–16442. doi: 10.1021/bi961593m. [DOI] [PubMed] [Google Scholar]
- Paquet J. L., Baudouin-Legros M., Brunelle G., Meyer P. Angiotensin II-induced proliferation of aortic myocytes in spontaneously hypertensive rats. J Hypertens. 1990 Jun;8(6):565–572. doi: 10.1097/00004872-199006000-00010. [DOI] [PubMed] [Google Scholar]
- Rands E., Candelore M. R., Cheung A. H., Hill W. S., Strader C. D., Dixon R. A. Mutational analysis of beta-adrenergic receptor glycosylation. J Biol Chem. 1990 Jun 25;265(18):10759–10764. [PubMed] [Google Scholar]
- Reeves P. J., Thurmond R. L., Khorana H. G. Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11487–11492. doi: 10.1073/pnas.93.21.11487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki K., Yamano Y., Bardhan S., Iwai N., Murray J. J., Hasegawa M., Matsuda Y., Inagami T. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature. 1991 May 16;351(6323):230–233. doi: 10.1038/351230a0. [DOI] [PubMed] [Google Scholar]
- Schall T. J., Lewis M., Koller K. J., Lee A., Rice G. C., Wong G. H., Gatanaga T., Granger G. A., Lentz R., Raab H. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell. 1990 Apr 20;61(2):361–370. doi: 10.1016/0092-8674(90)90816-w. [DOI] [PubMed] [Google Scholar]
- Servant G., Dudley D. T., Escher E., Guillemette G. Analysis of the role of N-glycosylation in cell-surface expression and binding properties of angiotensin II type-2 receptor of rat pheochromocytoma cells. Biochem J. 1996 Jan 1;313(Pt 1):297–304. doi: 10.1042/bj3130297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Servant G., Dudley D. T., Escher E., Guillemette G. The marked disparity between the sizes of angiotensin type 2 receptors from different tissues is related to different degrees of N-glycosylation. Mol Pharmacol. 1994 Jun;45(6):1112–1118. [PubMed] [Google Scholar]
- Yamano Y., Ohyama K., Chaki S., Guo D. F., Inagami T. Identification of amino acid residues of rat angiotensin II receptor for ligand binding by site directed mutagenesis. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1426–1431. doi: 10.1016/0006-291x(92)90461-s. [DOI] [PubMed] [Google Scholar]
- van Koppen C. J., Nathanson N. M. Site-directed mutagenesis of the m2 muscarinic acetylcholine receptor. Analysis of the role of N-glycosylation in receptor expression and function. J Biol Chem. 1990 Dec 5;265(34):20887–20892. [PubMed] [Google Scholar]