Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 15;339(Pt 2):407–411.

Identification and characterization of Saccharomyces cerevisiae yapsin 3, a new member of the yapsin family of aspartic proteases encoded by the YPS3 gene.

V Olsen 1, N X Cawley 1, J Brandt 1, M Egel-Mitani 1, Y P Loh 1
PMCID: PMC1220171  PMID: 10191273

Abstract

A new aspartic protease from Saccharomyces cerevisiae, with a high degree of similarity with yapsin 1 and yapsin 2 and a specificity for basic residue cleavage sites of prohormones, has been cloned. This enzyme was named yapsin 3. Expression of a C-terminally truncated non-membrane anchored yapsin 3 in yeast yielded a heterogeneous protein between 135-200 kDa which, upon treatment with endoglycosidase H, migrated as a 60 kDa form. Amino-acid analysis of the N-terminus of expressed yapsin 3 revealed two different N-terminal residues, serine-48 and phenylalanine-54, which followed a dibasic and a monobasic residue respectively. Cleavage of several prohormones by non-anchored yapsin 3 revealed a specificity distinct from that of yapsin 1.

Full Text

The Full Text of this article is available as a PDF (167.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ash J., Dominguez M., Bergeron J. J., Thomas D. Y., Bourbonnais Y. The yeast proprotein convertase encoded by YAP3 is a glycophosphatidylinositol-anchored protein that localizes to the plasma membrane. J Biol Chem. 1995 Sep 1;270(35):20847–20854. doi: 10.1074/jbc.270.35.20847. [DOI] [PubMed] [Google Scholar]
  2. Azaryan A. V., Schiller M., Mende-Mueller L., Hook V. Y. Characteristics of the chromaffin granule aspartic proteinase involved in proenkephalin processing. J Neurochem. 1995 Oct;65(4):1771–1779. doi: 10.1046/j.1471-4159.1995.65041771.x. [DOI] [PubMed] [Google Scholar]
  3. Azaryan A. V., Wong M., Friedman T. C., Cawley N. X., Estivariz F. E., Chen H. C., Loh Y. P. Purification and characterization of a paired basic residue-specific yeast aspartic protease encoded by the YAP3 gene. Similarity to the mammalian pro-opiomelanocortin-converting enzyme. J Biol Chem. 1993 Jun 5;268(16):11968–11975. [PubMed] [Google Scholar]
  4. Baldari C., Murray J. A., Ghiara P., Cesareni G., Galeotti C. L. A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae. EMBO J. 1987 Jan;6(1):229–234. doi: 10.1002/j.1460-2075.1987.tb04743.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bourbonnais Y., Germain D., Ash J., Thomas D. Y. Cleavage of prosomatostatins by the yeast Yap3 and Kex2 endoprotease. Biochimie. 1994;76(3-4):226–233. doi: 10.1016/0300-9084(94)90150-3. [DOI] [PubMed] [Google Scholar]
  6. Caro L. H., Tettelin H., Vossen J. H., Ram A. F., van den Ende H., Klis F. M. In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast. 1997 Dec;13(15):1477–1489. doi: 10.1002/(SICI)1097-0061(199712)13:15<1477::AID-YEA184>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  7. Cawley N. X., Chen H. C., Beinfeld M. C., Loh Y. P. Specificity and kinetic studies on the cleavage of various prohormone mono- and paired-basic residue sites by yeast aspartic protease 3. J Biol Chem. 1996 Feb 23;271(8):4168–4176. doi: 10.1074/jbc.271.8.4168. [DOI] [PubMed] [Google Scholar]
  8. Cawley N. X., Noe B. D., Loh Y. P. Purified yeast aspartic protease 3 cleaves anglerfish pro-somatostatin I and II at di- and monobasic sites to generate somatostatin-14 and -28. FEBS Lett. 1993 Oct 18;332(3):273–276. doi: 10.1016/0014-5793(93)80648-e. [DOI] [PubMed] [Google Scholar]
  9. Cawley N. X., Olsen V., Zhang C. F., Chen H. C., Tan M., Loh Y. P. Activation and processing of non-anchored yapsin 1 (Yap3p). J Biol Chem. 1998 Jan 2;273(1):584–591. doi: 10.1074/jbc.273.1.584. [DOI] [PubMed] [Google Scholar]
  10. Cawley N. X., Pu L. P., Loh Y. P. Immunological identification and localization of yeast aspartic protease 3-like prohormone-processing enzymes in mammalian brain and pituitary. Endocrinology. 1996 Nov;137(11):5135–5143. doi: 10.1210/endo.137.11.8895388. [DOI] [PubMed] [Google Scholar]
  11. Cawley N. X., Wong M., Pu L. P., Tam W., Loh Y. P. Secretion of yeast aspartic protease 3 is regulated by its carboxy-terminal tail: characterization of secreted YAP3p. Biochemistry. 1995 Jun 6;34(22):7430–7437. doi: 10.1021/bi00022a016. [DOI] [PubMed] [Google Scholar]
  12. Cherry J. M., Ball C., Weng S., Juvik G., Schmidt R., Adler C., Dunn B., Dwight S., Riles L., Mortimer R. K. Genetic and physical maps of Saccharomyces cerevisiae. Nature. 1997 May 29;387(6632 Suppl):67–73. [PMC free article] [PubMed] [Google Scholar]
  13. Dunn B. M., Jimenez M., Parten B. F., Valler M. J., Rolph C. E., Kay J. A systematic series of synthetic chromophoric substrates for aspartic proteinases. Biochem J. 1986 Aug 1;237(3):899–906. doi: 10.1042/bj2370899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Egel-Mitani M., Flygenring H. P., Hansen M. T. A novel aspartyl protease allowing KEX2-independent MF alpha propheromone processing in yeast. Yeast. 1990 Mar-Apr;6(2):127–137. doi: 10.1002/yea.320060206. [DOI] [PubMed] [Google Scholar]
  15. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hines V., Zhang W., Ramakrishna N., Styles J., Mehta P., Kim K. S., Innis M., Miller D. L. The expression and processing of human beta-amyloid peptide precursors in Saccharomyces cerevisiae: evidence for a novel endopeptidase in the yeast secretory system. Cell Mol Biol Res. 1994;40(4):273–284. [PubMed] [Google Scholar]
  17. Komano H., Fuller R. S. Shared functions in vivo of a glycosyl-phosphatidylinositol-linked aspartyl protease, Mkc7, and the proprotein processing protease Kex2 in yeast. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10752–10756. doi: 10.1073/pnas.92.23.10752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Loh Y. P., Cawley N. X. Processing enzymes of pepsin family: yeast aspartic protease 3 and pro-opiomelanocortin converting enzyme. Methods Enzymol. 1995;248:136–146. doi: 10.1016/0076-6879(95)48011-0. [DOI] [PubMed] [Google Scholar]
  19. Loh Y. P., Parish D. C., Tuteja R. Purification and characterization of a paired basic residue-specific pro-opiomelanocortin converting enzyme from bovine pituitary intermediate lobe secretory vesicles. J Biol Chem. 1985 Jun 25;260(12):7194–7205. [PubMed] [Google Scholar]
  20. MacKay V. L., Armstrong J., Yip C., Welch S., Walker K., Osborn S., Sheppard P., Forstrom J. Characterization of the Bar proteinase, an extracellular enzyme from the yeast Saccharomyces cerevisiae. Adv Exp Med Biol. 1991;306:161–172. doi: 10.1007/978-1-4684-6012-4_21. [DOI] [PubMed] [Google Scholar]
  21. MacKay V. L., Welch S. K., Insley M. Y., Manney T. R., Holly J., Saari G. C., Parker M. L. The Saccharomyces cerevisiae BAR1 gene encodes an exported protein with homology to pepsin. Proc Natl Acad Sci U S A. 1988 Jan;85(1):55–59. doi: 10.1073/pnas.85.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mackin R. B., Noe B. D., Spiess J. The anglerfish somatostatin-28-generating propeptide converting enzyme is an aspartyl protease. Endocrinology. 1991 Oct;129(4):1951–1957. doi: 10.1210/endo-129-4-1951. [DOI] [PubMed] [Google Scholar]
  23. Olsen V., Guruprasad K., Cawley N. X., Chen H. C., Blundell T. L., Loh Y. P. Cleavage efficiency of the novel aspartic protease yapsin 1 (Yap3p) enhanced for substrates with arginine residues flanking the P1 site: correlation with electronegative active-site pockets predicted by molecular modeling. Biochemistry. 1998 Mar 3;37(9):2768–2777. doi: 10.1021/bi9724826. [DOI] [PubMed] [Google Scholar]
  24. Pearson W. R. Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. Genomics. 1991 Nov;11(3):635–650. doi: 10.1016/0888-7543(91)90071-l. [DOI] [PubMed] [Google Scholar]
  25. Smith T. F., Waterman M. S. Identification of common molecular subsequences. J Mol Biol. 1981 Mar 25;147(1):195–197. doi: 10.1016/0022-2836(81)90087-5. [DOI] [PubMed] [Google Scholar]
  26. Woolford C. A., Daniels L. B., Park F. J., Jones E. W., Van Arsdell J. N., Innis M. A. The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases. Mol Cell Biol. 1986 Jul;6(7):2500–2510. doi: 10.1128/mcb.6.7.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zhang W., Espinoza D., Hines V., Innis M., Mehta P., Miller D. L. Characterization of beta-amyloid peptide precursor processing by the yeast Yap3 and Mkc7 proteases. Biochim Biophys Acta. 1997 Nov 27;1359(2):110–122. doi: 10.1016/s0167-4889(97)00082-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES