Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 15;339(Pt 2):419–427.

Calcium-binding protein S100A7 and epidermal-type fatty acid-binding protein are associated in the cytosol of human keratinocytes.

G Hagens 1, I Masouyé 1, E Augsburger 1, R Hotz 1, J H Saurat 1, G Siegenthaler 1
PMCID: PMC1220173  PMID: 10191275

Abstract

Expression of epidermal-type fatty acid-binding protein (E-FABP) and S100A7 has previously been shown to be elevated in psoriatic skin, a disease characterized by abnormal keratinocyte differentiation. However, no causal relationship between the up-regulation of these proteins and the disease has been shown. E-FABP is thought to be involved in cytosolic fatty acid (FA) transport, whereas the role of S100A7 is still unknown. In this report, we show by overlay assays that E-FABP, immobilized on nitrocellulose, is able to capture S100A7 from cytosolic psoriatic protein extracts and vice versa, suggesting the formation of a complex between the two proteins. Using purified E-FABP and S100A7, the complex can be reconstituted only in presence of EDTA. Moreover, we show that increased EDTA concentrations in psoriatic cytosolic protein extracts enhance complex formation. Partial complex disruption was obtained by the addition of physiological concentrations of Zn2+ (0.1 mM), whereas Ca2+ at 5 mM and Mg2+ at 30 mM had no effect. On the other hand, high Ca2+ concentrations (30 mM) resulted in partial complex disruption. Oleic acid-binding properties were observed for free E-FABP and the complex E-FABP-S100A7, but not for free S100A7. By using confocal microscopy we show that S100A7 and E-FABP are co-localized in the cytoplasm of differentiating keratinocytes from lesional psoriatic skin. These data indicate that formation of the E-FABP-S100A7 complex and its FA-binding function might be regulated at least by bivalent cations.

Full Text

The Full Text of this article is available as a PDF (314.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baudier J., Glasser N., Gerard D. Ions binding to S100 proteins. I. Calcium- and zinc-binding properties of bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) protein: Zn2+ regulates Ca2+ binding on S100b protein. J Biol Chem. 1986 Jun 25;261(18):8192–8203. [PubMed] [Google Scholar]
  2. Bürgisser D. M., Siegenthaler G., Kuster T., Hellman U., Hunziker P., Birchler N., Heizmann C. W. Amino acid sequence analysis of human S100A7 (psoriasin) by tandem mass spectrometry. Biochem Biophys Res Commun. 1995 Dec 5;217(1):257–263. doi: 10.1006/bbrc.1995.2772. [DOI] [PubMed] [Google Scholar]
  3. Crettaz M., Baron A., Siegenthaler G., Hunziker W. Ligand specificities of recombinant retinoic acid receptors RAR alpha and RAR beta. Biochem J. 1990 Dec 1;272(2):391–397. doi: 10.1042/bj2720391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dell'Angelica E. C., Schleicher C. H., Santomé J. A. Primary structure and binding properties of calgranulin C, a novel S100-like calcium-binding protein from pig granulocytes. J Biol Chem. 1994 Nov 18;269(46):28929–28936. [PubMed] [Google Scholar]
  5. Duell E. A., Ellis C. N., Voorhees J. J. Determination of 5,12, and 15-lipoxygenase products in keratomed biopsies of normal and psoriatic skin. J Invest Dermatol. 1988 Nov;91(5):446–450. doi: 10.1111/1523-1747.ep12476562. [DOI] [PubMed] [Google Scholar]
  6. Elias P. M., Menon G. K. Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res. 1991;24:1–26. doi: 10.1016/b978-0-12-024924-4.50005-5. [DOI] [PubMed] [Google Scholar]
  7. Fairley J. A., Marcelo C. L., Hogan V. A., Voorhees J. J. Increased calmodulin levels in psoriasis and low Ca++ regulated mouse epidermal keratinocyte cultures. J Invest Dermatol. 1985 Mar;84(3):195–198. doi: 10.1111/1523-1747.ep12264823. [DOI] [PubMed] [Google Scholar]
  8. Filipek A., Heizmann C. W., Kuźnicki J. Calcyclin is a calcium and zinc binding protein. FEBS Lett. 1990 May 21;264(2):263–266. doi: 10.1016/0014-5793(90)80263-i. [DOI] [PubMed] [Google Scholar]
  9. Fogh K., Herlin T., Kragballe K. Eicosanoids in acute and chronic psoriatic lesions: leukotriene B4, but not 12-hydroxy-eicosatetraenoic acid, is present in biologically active amounts in acute guttate lesions. J Invest Dermatol. 1989 Jun;92(6):837–841. doi: 10.1111/1523-1747.ep12696858. [DOI] [PubMed] [Google Scholar]
  10. Fogh K., Voorhees J. J., Aström A. Expression, purification, and binding properties of human cellular retinoic acid-binding protein type I and type II. Arch Biochem Biophys. 1993 Feb 1;300(2):751–755. doi: 10.1006/abbi.1993.1104. [DOI] [PubMed] [Google Scholar]
  11. Franz C., Durussel I., Cox J. A., Schäfer B. W., Heizmann C. W. Binding of Ca2+ and Zn2+ to human nuclear S100A2 and mutant proteins. J Biol Chem. 1998 Jul 24;273(30):18826–18834. doi: 10.1074/jbc.273.30.18826. [DOI] [PubMed] [Google Scholar]
  12. Glatz J. F., Vork M. M., Cistola D. P., van der Vusse G. J. Cytoplasmic fatty acid binding protein: significance for intracellular transport of fatty acids and putative role on signal transduction pathways. Prostaglandins Leukot Essent Fatty Acids. 1993 Jan;48(1):33–41. doi: 10.1016/0952-3278(93)90007-j. [DOI] [PubMed] [Google Scholar]
  13. Gribenko A. V., Makhatadze G. I. Oligomerization and divalent ion binding properties of the S100P protein: a Ca2+/Mg2+-switch model. J Mol Biol. 1998 Oct 30;283(3):679–694. doi: 10.1006/jmbi.1998.2116. [DOI] [PubMed] [Google Scholar]
  14. Hennings H., Michael D., Cheng C., Steinert P., Holbrook K., Yuspa S. H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980 Jan;19(1):245–254. doi: 10.1016/0092-8674(80)90406-7. [DOI] [PubMed] [Google Scholar]
  15. Kligman D., Hilt D. C. The S100 protein family. Trends Biochem Sci. 1988 Nov;13(11):437–443. doi: 10.1016/0968-0004(88)90218-6. [DOI] [PubMed] [Google Scholar]
  16. Kragballe K., Voorhees J. J. Eicosanoids in psoriasis--15-HETE on the stage. Dermatologica. 1987;174(5):209–213. doi: 10.1159/000249181. [DOI] [PubMed] [Google Scholar]
  17. Madsen P., Rasmussen H. H., Leffers H., Honoré B., Celis J. E. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins. J Invest Dermatol. 1992 Sep;99(3):299–305. doi: 10.1111/1523-1747.ep12616641. [DOI] [PubMed] [Google Scholar]
  18. Madsen P., Rasmussen H. H., Leffers H., Honoré B., Dejgaard K., Olsen E., Kiil J., Walbum E., Andersen A. H., Basse B. Molecular cloning, occurrence, and expression of a novel partially secreted protein "psoriasin" that is highly up-regulated in psoriatic skin. J Invest Dermatol. 1991 Oct;97(4):701–712. doi: 10.1111/1523-1747.ep12484041. [DOI] [PubMed] [Google Scholar]
  19. Masouyé I., Hagens G., Van Kuppevelt T. H., Madsen P., Saurat J. H., Veerkamp J. H., Pepper M. S., Siegenthaler G. Endothelial cells of the human microvasculature express epidermal fatty acid-binding protein. Circ Res. 1997 Sep;81(3):297–303. doi: 10.1161/01.res.81.3.297. [DOI] [PubMed] [Google Scholar]
  20. Masouyé I., Saurat J. H., Siegenthaler G. Epidermal fatty-acid-binding protein in psoriasis, basal and squamous cell carcinomas: an immunohistological study. Dermatology. 1996;192(3):208–213. doi: 10.1159/000246367. [DOI] [PubMed] [Google Scholar]
  21. Menon G. K., Elias P. M., Lee S. H., Feingold K. R. Localization of calcium in murine epidermis following disruption and repair of the permeability barrier. Cell Tissue Res. 1992 Dec;270(3):503–512. doi: 10.1007/BF00645052. [DOI] [PubMed] [Google Scholar]
  22. Menon G. K., Elias P. M. Ultrastructural localization of calcium in psoriatic and normal human epidermis. Arch Dermatol. 1991 Jan;127(1):57–63. [PubMed] [Google Scholar]
  23. Menon G. K., Feingold K. R., Elias P. M. Lamellar body secretory response to barrier disruption. J Invest Dermatol. 1992 Mar;98(3):279–289. doi: 10.1111/1523-1747.ep12497866. [DOI] [PubMed] [Google Scholar]
  24. Menon G. K., Grayson S., Elias P. M. Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol. 1985 Jun;84(6):508–512. doi: 10.1111/1523-1747.ep12273485. [DOI] [PubMed] [Google Scholar]
  25. Olsen E., Rasmussen H. H., Celis J. E. Identification of proteins that are abnormally regulated in differentiated cultured human keratinocytes. Electrophoresis. 1995 Dec;16(12):2241–2248. doi: 10.1002/elps.11501601356. [DOI] [PubMed] [Google Scholar]
  26. Onions J., Hermann S., Grundström T. Basic helix-loop-helix protein sequences determining differential inhibition by calmodulin and S-100 proteins. J Biol Chem. 1997 Sep 19;272(38):23930–23937. doi: 10.1074/jbc.272.38.23930. [DOI] [PubMed] [Google Scholar]
  27. Rheinwald J. G., Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature. 1977 Feb 3;265(5593):421–424. doi: 10.1038/265421a0. [DOI] [PubMed] [Google Scholar]
  28. Robinson N. A., Lapic S., Welter J. F., Eckert R. L. S100A11, S100A10, annexin I, desmosomal proteins, small proline-rich proteins, plasminogen activator inhibitor-2, and involucrin are components of the cornified envelope of cultured human epidermal keratinocytes. J Biol Chem. 1997 May 2;272(18):12035–12046. doi: 10.1074/jbc.272.18.12035. [DOI] [PubMed] [Google Scholar]
  29. Schäfer B. W., Heizmann C. W. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996 Apr;21(4):134–140. doi: 10.1016/s0968-0004(96)80167-8. [DOI] [PubMed] [Google Scholar]
  30. Siegenthaler G., Hotz R., Chatellard-Gruaz D., Didierjean L., Hellman U., Saurat J. H. Purification and characterization of the human epidermal fatty acid-binding protein: localization during epidermal cell differentiation in vivo and in vitro. Biochem J. 1994 Sep 1;302(Pt 2):363–371. doi: 10.1042/bj3020363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Siegenthaler G., Hotz R., Chatellard-Gruaz D., Jaconi S., Saurat J. H. Characterization and expression of a novel human fatty acid-binding protein: the epidermal type (E-FABP). Biochem Biophys Res Commun. 1993 Jan 29;190(2):482–487. doi: 10.1006/bbrc.1993.1073. [DOI] [PubMed] [Google Scholar]
  32. Siegenthaler G., Roulin K., Chatellard-Gruaz D., Hotz R., Saurat J. H., Hellman U., Hagens G. A heterocomplex formed by the calcium-binding proteins MRP8 (S100A8) and MRP14 (S100A9) binds unsaturated fatty acids with high affinity. J Biol Chem. 1997 Apr 4;272(14):9371–9377. doi: 10.1074/jbc.272.14.9371. [DOI] [PubMed] [Google Scholar]
  33. Siegenthaler G., Saurat J. H., Ponec M. Terminal differentiation in cultured human keratinocytes is associated with increased levels of cellular retinoic acid-binding protein. Exp Cell Res. 1988 Sep;178(1):114–126. doi: 10.1016/0014-4827(88)90383-7. [DOI] [PubMed] [Google Scholar]
  34. Vorum H., Madsen P., Rasmussen H. H., Etzerodt M., Svendsen I., Celis J. E., Honoré B. Expression and divalent cation binding properties of the novel chemotactic inflammatory protein psoriasin. Electrophoresis. 1996 Nov;17(11):1787–1796. doi: 10.1002/elps.1150171118. [DOI] [PubMed] [Google Scholar]
  35. Watt F. M., Mattey D. L., Garrod D. R. Calcium-induced reorganization of desmosomal components in cultured human keratinocytes. J Cell Biol. 1984 Dec;99(6):2211–2215. doi: 10.1083/jcb.99.6.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wu T., Angus C. W., Yao X. L., Logun C., Shelhamer J. H. P11, a unique member of the S100 family of calcium-binding proteins, interacts with and inhibits the activity of the 85-kDa cytosolic phospholipase A2. J Biol Chem. 1997 Jul 4;272(27):17145–17153. doi: 10.1074/jbc.272.27.17145. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES