Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 15;339(Pt 2):429–434.

Cellulose as an inert matrix for presenting cytokines to target cells: production and properties of a stem cell factor-cellulose-binding domain fusion protein.

J G Doheny 1, E J Jervis 1, M M Guarna 1, R K Humphries 1, R A Warren 1, D G Kilburn 1
PMCID: PMC1220174  PMID: 10191276

Abstract

A chimaera of stem cell factor (SCF) and a cellulose-binding domain from the xylanase Cex (CBDCex) effectively immobilizes SCF on a cellulose surface. The fusion protein retains both the cytokine properties of SCF and the cellulose-binding characteristics of CBDCex. When adsorbed on cellulose, SCF-CBDCex is up to 7-fold more potent than soluble SCF-CBDCex and than native SCF at stimulating the proliferation of factor-dependent cell lines. When cells are incubated with cellulose-bound SCF-CBDCex, activated receptors and SCF-CBDCex co-localize on the cellulose matrix. The strong binding of SCF-CBDCex to the cellulose surface permits the effective and localized stimulation of target cells; this is potentially significant for long-term perfusion culturing of factor-dependent cells. It also permits the direct analysis of the effects of surface-bound cytokines on target cells.

Full Text

The Full Text of this article is available as a PDF (257.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. M., Lyman S. D., Baird A., Wignall J. M., Eisenman J., Rauch C., March C. J., Boswell H. S., Gimpel S. D., Cosman D. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell. 1990 Oct 5;63(1):235–243. doi: 10.1016/0092-8674(90)90304-w. [DOI] [PubMed] [Google Scholar]
  2. Assouline Z., Shen H., Kilburn D. G., Warren R. A. Production and properties of a factor X-cellulose-binding domain fusion protein. Protein Eng. 1993 Sep;6(7):787–792. doi: 10.1093/protein/6.7.787. [DOI] [PubMed] [Google Scholar]
  3. Avanzi G. C., Brizzi M. F., Giannotti J., Ciarletta A., Yang Y. C., Pegoraro L., Clark S. C. M-07e human leukemic factor-dependent cell line provides a rapid and sensitive bioassay for the human cytokines GM-CSF and IL-3. J Cell Physiol. 1990 Dec;145(3):458–464. doi: 10.1002/jcp.1041450310. [DOI] [PubMed] [Google Scholar]
  4. Bolam D. N., Ciruela A., McQueen-Mason S., Simpson P., Williamson M. P., Rixon J. E., Boraston A., Hazlewood G. P., Gilbert H. J. Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J. 1998 May 1;331(Pt 3):775–781. doi: 10.1042/bj3310775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bray M. R., Johnson P. E., Gilkes N. R., McIntosh L. P., Kilburn D. G., Warren R. A. Probing the role of tryptophan residues in a cellulose-binding domain by chemical modification. Protein Sci. 1996 Nov;5(11):2311–2318. doi: 10.1002/pro.5560051117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Broudy V. C. Stem cell factor and hematopoiesis. Blood. 1997 Aug 15;90(4):1345–1364. [PubMed] [Google Scholar]
  7. Creagh A. L., Ong E., Jervis E., Kilburn D. G., Haynes C. A. Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12229–12234. doi: 10.1073/pnas.93.22.12229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cuatrecasas P. Interaction of insulin with the cell membrane: the primary action of insulin. Proc Natl Acad Sci U S A. 1969 Jun;63(2):450–457. doi: 10.1073/pnas.63.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Denizot F., Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986 May 22;89(2):271–277. doi: 10.1016/0022-1759(86)90368-6. [DOI] [PubMed] [Google Scholar]
  10. Gilkes N. R., Jervis E., Henrissat B., Tekant B., Miller R. C., Jr, Warren R. A., Kilburn D. G. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem. 1992 Apr 5;267(10):6743–6749. [PubMed] [Google Scholar]
  11. Gilkes N. R., Warren R. A., Miller R. C., Jr, Kilburn D. G. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J Biol Chem. 1988 Jul 25;263(21):10401–10407. [PubMed] [Google Scholar]
  12. Graham R. W., Greenwood J. M., Warren R. A., Kilburn D. G., Trimbur D. E. The pTugA and pTugAS vectors for high-level expression of cloned genes in Escherichia coli. Gene. 1995 May 26;158(1):51–54. doi: 10.1016/0378-1119(95)00165-3. [DOI] [PubMed] [Google Scholar]
  13. Greenberger J. S., Sakakeeny M. A., Humphries R. K., Eaves C. J., Eckner R. J. Demonstration of permanent factor-dependent multipotential (erythroid/neutrophil/basophil) hematopoietic progenitor cell lines. Proc Natl Acad Sci U S A. 1983 May;80(10):2931–2935. doi: 10.1073/pnas.80.10.2931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horwitz J. I., Toner M., Tompkins R. G., Yarmush M. L. Immobilized IL-2 preserves the viability of an IL-2 dependent cell line. Mol Immunol. 1993 Aug;30(11):1041–1048. doi: 10.1016/0161-5890(93)90129-y. [DOI] [PubMed] [Google Scholar]
  15. Ito Y., Zheng J., Imanishi Y., Yonezawa K., Kasuga M. Protein-free cell culture on an artificial substrate with covalently immobilized insulin. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3598–3601. doi: 10.1073/pnas.93.8.3598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jervis E. J., Haynes C. A., Kilburn D. G. Surface diffusion of cellulases and their isolated binding domains on cellulose. J Biol Chem. 1997 Sep 19;272(38):24016–24023. doi: 10.1074/jbc.272.38.24016. [DOI] [PubMed] [Google Scholar]
  17. Kitamura T., Tange T., Terasawa T., Chiba S., Kuwaki T., Miyagawa K., Piao Y. F., Miyazono K., Urabe A., Takaku F. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol. 1989 Aug;140(2):323–334. doi: 10.1002/jcp.1041400219. [DOI] [PubMed] [Google Scholar]
  18. Kuhl P. R., Griffith-Cima L. G. Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nat Med. 1996 Sep;2(9):1022–1027. doi: 10.1038/nm0996-1022. [DOI] [PubMed] [Google Scholar]
  19. Miyazawa K., Williams D. A., Gotoh A., Nishimaki J., Broxmeyer H. E., Toyama K. Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood. 1995 Feb 1;85(3):641–649. [PubMed] [Google Scholar]
  20. Nossal N. G., Heppel L. A. The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J Biol Chem. 1966 Jul 10;241(13):3055–3062. [PubMed] [Google Scholar]
  21. O'Neill G., Goh S. H., Warren R. A., Kilburn D. G., Miller R. C., Jr Structure of the gene encoding the exoglucanase of Cellulomonas fimi. Gene. 1986;44(2-3):325–330. doi: 10.1016/0378-1119(86)90197-6. [DOI] [PubMed] [Google Scholar]
  22. Ong E., Gilkes N. R., Miller R. C., Jr, Warren A. J., Kilburn D. G. Enzyme immobilization using a cellulose-binding domain: properties of a beta-glucosidase fusion protein. Enzyme Microb Technol. 1991 Jan;13(1):59–65. doi: 10.1016/0141-0229(91)90189-h. [DOI] [PubMed] [Google Scholar]
  23. Toksoz D., Zsebo K. M., Smith K. A., Hu S., Brankow D., Suggs S. V., Martin F. H., Williams D. A. Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7350–7354. doi: 10.1073/pnas.89.16.7350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tomme P., Boraston A., McLean B., Kormos J., Creagh A. L., Sturch K., Gilkes N. R., Haynes C. A., Warren R. A., Kilburn D. G. Characterization and affinity applications of cellulose-binding domains. J Chromatogr B Biomed Sci Appl. 1998 Sep 11;715(1):283–296. doi: 10.1016/s0378-4347(98)00053-x. [DOI] [PubMed] [Google Scholar]
  25. Tomme P., Gilkes N. R., Guarna M. M., Haynes C. A., Hasenwinkle D., Jervis E., Johnson P., McIntosh L., Warren R. A., Kilburn D. G. Cellulose-binding domains. Versatile affinity tags for inexpensive large-scale purification, concentration, and immobilization of fusion proteins. Ann N Y Acad Sci. 1996 Oct 12;799:418–424. doi: 10.1111/j.1749-6632.1996.tb33235.x. [DOI] [PubMed] [Google Scholar]
  26. Tomme P., Gilkes N. R., Miller R. C., Jr, Warren A. J., Kilburn D. G. An internal cellulose-binding domain mediates adsorption of an engineered bifunctional xylanase/cellulase. Protein Eng. 1994 Jan;7(1):117–123. doi: 10.1093/protein/7.1.117. [DOI] [PubMed] [Google Scholar]
  27. Xu G. Y., Ong E., Gilkes N. R., Kilburn D. G., Muhandiram D. R., Harris-Brandts M., Carver J. P., Kay L. E., Harvey T. S. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry. 1995 May 30;34(21):6993–7009. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES