Abstract
We have explored in detail the determinants of specificity for the hydrolysis by human tissue kallikrein (hK1) of substrates containing the Phe-Phe amino acid pair, after which hK1 cleaves kallistatin (human kallikrein-binding protein), a specific serpin for this protease, as well as somatostatin 1-14. Internally quenched fluorogenic peptides were synthesized with the general structure Abz-peptidyl-EDDnp [Abz, o-aminobenzoic acid; EDDnp, N-(2, 4-dinitrophenyl)ethylenediamine], based on the natural reactive-centre loop sequence of kallistatin from P9 to P'13, and the kinetic parameters of their hydrolysis by hK1 were determined. All these peptides were cleaved after the Phe-Phe pair. For comparison, we have also examined peptides containing the reactive-centre loop sequences of human protein-C inhibitor (PCI) and rat kallikrein-binding protein, which were hydrolysed after Phe-Arg and Leu-Lys bonds, respectively. Hybrid peptides containing kallistatin-PCI sequences showed that the efficiency of hK1 activity on the peptides containing kallistatin and PCI sequences depended on both the nature of the P1 amino acid as well as on residues at the P- and P'-sides. Moreover, we have made systematic modifications on the hydrophobic pair Phe-Phe, and on Lys and Ile at the P3 and P4 positions according to the peptide substrate, Abz-AIKFFSRQ-EDDnp. All together, we concluded that tissue kallikrein was very effective on short substrates that are cleaved after the Phe-Arg pair; however, hydrolysis after Phe-Phe or other hydrophobic pairs of amino acids was more restrictive, requiring additional enzyme-substrate interaction and/or particular substrate conformations.
Full Text
The Full Text of this article is available as a PDF (118.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alhenc-Gelas F., Marchetti J., Allegrini J., Corvol P., Menard J. Measurement of urinary kallikrein activity. Species differences in kinin production. Biochim Biophys Acta. 1981 Nov 5;677(3-4):477–488. doi: 10.1016/0304-4165(81)90262-2. [DOI] [PubMed] [Google Scholar]
- Alves L. C., Almeida P. C., Franzoni L., Juliano L., Juliano M. A. Synthesis of N alpha-protected aminoacyl 7-amino-4-methyl-coumarin amide by phosphorous oxychloride and preparation of specific fluorogenic substrates for papain. Pept Res. 1996 Mar-Apr;9(2):92–96. [PubMed] [Google Scholar]
- Araújo-Viel M. S., Juliano M. A., Oliveira L., Prado E. S. Horse urinary kallikrein, II. Effect of subsite interactions on its catalytic activity. Biol Chem Hoppe Seyler. 1988 May;369(5):397–401. doi: 10.1515/bchm3.1988.369.1.397. [DOI] [PubMed] [Google Scholar]
- Baumgarten C. R., Nichols R. C., Naclerio R. M., Proud D. Concentrations of glandular kallikrein in human nasal secretions increase during experimentally induced allergic rhinitis. J Immunol. 1986 Aug 15;137(4):1323–1328. [PubMed] [Google Scholar]
- Berg T., Bradshaw R. A., Carretero O. A., Chao J., Chao L., Clements J. A., Fahnestock M., Fritz H., Gauthier F., MacDonald R. J. A common nomenclature for members of the tissue (glandular) kallikrein gene families. Agents Actions Suppl. 1992;38(Pt 1):19–25. doi: 10.1007/978-3-0348-7321-5_3. [DOI] [PubMed] [Google Scholar]
- Bhoola K. D., Figueroa C. D., Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev. 1992 Mar;44(1):1–80. [PubMed] [Google Scholar]
- Bourgeois L., Brillard-Bourdet M., Deperthes D., Juliano M. A., Juliano L., Tremblay R. R., Dubé J. Y., Gauthier F. Serpin-derived peptide substrates for investigating the substrate specificity of human tissue kallikreins hK1 and hK2. J Biol Chem. 1997 Nov 21;272(47):29590–29595. doi: 10.1074/jbc.272.47.29590. [DOI] [PubMed] [Google Scholar]
- Camargo A. C., Gomes M. D., Reichl A. P., Ferro E. S., Jacchieri S., Hirata I. Y., Juliano L. Structural features that make oligopeptides susceptible substrates for hydrolysis by recombinant thimet oligopeptidase. Biochem J. 1997 Jun 1;324(Pt 2):517–522. doi: 10.1042/bj3240517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chagas J. R., Hirata I. Y., Juliano M. A., Xiong W., Wang C., Chao J., Juliano L., Prado E. S. Substrate specificities of tissue kallikrein and T-kininogenase: their possible role in kininogen processing. Biochemistry. 1992 Jun 2;31(21):4969–4974. doi: 10.1021/bi00136a008. [DOI] [PubMed] [Google Scholar]
- Chagas J. R., Juliano L., Prado E. S. Intramolecularly quenched fluorogenic tetrapeptide substrates for tissue and plasma kallikreins. Anal Biochem. 1991 Feb 1;192(2):419–425. doi: 10.1016/0003-2697(91)90558-b. [DOI] [PubMed] [Google Scholar]
- Chagas J. R., Portaro F. C., Hirata I. Y., Almeida P. C., Juliano M. A., Juliano L., Prado E. S. Determinants of the unusual cleavage specificity of lysyl-bradykinin-releasing kallikreins. Biochem J. 1995 Feb 15;306(Pt 1):63–69. doi: 10.1042/bj3060063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chai K. X., Chen L. M., Chao J., Chao L. Kallistatin: a novel human serine proteinase inhibitor. Molecular cloning, tissue distribution, and expression in Escherichia coli. J Biol Chem. 1993 Nov 15;268(32):24498–24505. [PubMed] [Google Scholar]
- Chen L. M., Chao L., Mayfield R. K., Chao J. Differential interactions of human kallikrein-binding protein and alpha 1-antitrypsin with human tissue kallikrein. Biochem J. 1990 Apr 1;267(1):79–84. doi: 10.1042/bj2670079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Z., Bode W. Refined 2.5 A X-ray crystal structure of the complex formed by porcine kallikrein A and the bovine pancreatic trypsin inhibitor. Crystallization, Patterson search, structure determination, refinement, structure and comparison with its components and with the bovine trypsin-pancreatic trypsin inhibitor complex. J Mol Biol. 1983 Feb 25;164(2):283–311. doi: 10.1016/0022-2836(83)90078-5. [DOI] [PubMed] [Google Scholar]
- Christiansen S. C., Proud D., Cochrane C. G. Detection of tissue kallikrein in the bronchoalveolar lavage fluid of asthmatic subjects. J Clin Invest. 1987 Jan;79(1):188–197. doi: 10.1172/JCI112782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Nery E., Chagas J. R., Juliano M. A., Prado E. S., Juliano L. Evaluation of the extent of the binding site in human tissue kallikrein by synthetic substrates with sequences of human kininogen fragments. Biochem J. 1995 Nov 15;312(Pt 1):233–238. doi: 10.1042/bj3120233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deperthes D., Frenette G., Brillard-Bourdet M., Bourgeois L., Gauthier F., Tremblay R. R., Dubé J. Y. Potential involvement of kallikrein hK2 in the hydrolysis of the human seminal vesicle proteins after ejaculation. J Androl. 1996 Nov-Dec;17(6):659–665. [PubMed] [Google Scholar]
- Ecke S., Geiger M., Resch I., Jerabek I., Sting L., Maier M., Binder B. R. Inhibition of tissue kallikrein by protein C inhibitor. Evidence for identity of protein C inhibitor with the kallikrein binding protein. J Biol Chem. 1992 Apr 5;267(10):7048–7052. [PubMed] [Google Scholar]
- Fiedler F. Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin. Eur J Biochem. 1987 Mar 2;163(2):303–312. doi: 10.1111/j.1432-1033.1987.tb10801.x. [DOI] [PubMed] [Google Scholar]
- Fiedler F., Hinz H., Lottspeich F. Individual reaction steps in the release of kallidin from kininogen by tissue kallikrein. Adv Exp Med Biol. 1986;198(Pt A):283–289. doi: 10.1007/978-1-4684-5143-6_39. [DOI] [PubMed] [Google Scholar]
- Hubbard S. J., Beynon R. J., Thornton J. M. Assessment of conformational parameters as predictors of limited proteolytic sites in native protein structures. Protein Eng. 1998 May;11(5):349–359. doi: 10.1093/protein/11.5.349. [DOI] [PubMed] [Google Scholar]
- Jacchieri S. G., Gomes M. D., Juliano L., Camargo A. C. A comparative conformational analysis of thimet oligopeptidase (EC 3.4.24.15) substrates. J Pept Res. 1998 Jun;51(6):452–459. doi: 10.1111/j.1399-3011.1998.tb00644.x. [DOI] [PubMed] [Google Scholar]
- Kato H., Enjyoji K., Miyata T., Hayashi I., Oh-ishi S., Iwanaga S. Demonstration of arginyl-bradykinin moiety in rat HMW kininogen: direct evidence for liberation of bradykinin by rat glandular kallikreins. Biochem Biophys Res Commun. 1985 Feb 28;127(1):289–295. doi: 10.1016/s0006-291x(85)80157-1. [DOI] [PubMed] [Google Scholar]
- Katz B. A., Liu B., Barnes M., Springman E. B. Crystal structure of recombinant human tissue kallikrein at 2.0 A resolution. Protein Sci. 1998 Apr;7(4):875–885. doi: 10.1002/pro.5560070405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loebermann H., Tokuoka R., Deisenhofer J., Huber R. Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J Mol Biol. 1984 Aug 15;177(3):531–557. [PubMed] [Google Scholar]
- MacDonald R. J., Margolius H. S., Erdös E. G. Molecular biology of tissue kallikrein. Biochem J. 1988 Jul 15;253(2):313–321. doi: 10.1042/bj2530313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikolajczyk S. D., Millar L. S., Kumar A., Saedi M. S. Human glandular kallikrein, hK2, shows arginine-restricted specificity and forms complexes with plasma protease inhibitors. Prostate. 1998 Jan 1;34(1):44–50. doi: 10.1002/(sici)1097-0045(19980101)34:1<44::aid-pros6>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
- Mittl P. R., Di Marco S., Fendrich G., Pohlig G., Heim J., Sommerhoff C., Fritz H., Priestle J. P., Grütter M. G. A new structural class of serine protease inhibitors revealed by the structure of the hirustasin-kallikrein complex. Structure. 1997 Feb 15;5(2):253–264. doi: 10.1016/s0969-2126(97)00183-4. [DOI] [PubMed] [Google Scholar]
- Nicklin M. J., Barrett A. J. Inhibition of cysteine proteinases and dipeptidyl peptidase I by egg-white cystatin. Biochem J. 1984 Oct 1;223(1):245–253. doi: 10.1042/bj2230245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliveira L., Araujo-Viel M. S., Juliano L., Prado E. S. Substrate activation of porcine pancreatic kallikrein by N alpha derivatives of arginine 4-nitroanilides. Biochemistry. 1987 Aug 11;26(16):5032–5035. doi: 10.1021/bi00390a022. [DOI] [PubMed] [Google Scholar]
- Pimenta D. C., Juliano M. A., Juliano L. Hydrolysis of somatostatin by human tissue kallikrein after the amino acid pair phe-Phe. Biochem J. 1997 Oct 1;327(Pt 1):27–30. doi: 10.1042/bj3270027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prado E. S., Araújo-Viel M. S., Juliano M. A., Juliano L., Stella R. C., Sampaio C. A. Tetrapeptide substrates for the discrimination among kallikreins and other trypsin-like serine proteinases. Biol Chem Hoppe Seyler. 1986 Mar;367(3):199–205. doi: 10.1515/bchm3.1986.367.1.199. [DOI] [PubMed] [Google Scholar]
- Prado E. S., Prado de Carvalho L., Araujo-Viel M. S., Ling N., Rossier J. A Met-enkephalin-containing-peptide, BAM 22P, as a novel substrate for glandular kallikreins. Biochem Biophys Res Commun. 1983 Apr 29;112(2):366–371. doi: 10.1016/0006-291x(83)91472-9. [DOI] [PubMed] [Google Scholar]
- Proud D., Togias A., Naclerio R. M., Crush S. A., Norman P. S., Lichtenstein L. M. Kinins are generated in vivo following nasal airway challenge of allergic individuals with allergen. J Clin Invest. 1983 Nov;72(5):1678–1685. doi: 10.1172/JCI111127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riegman P. H., Vlietstra R. J., Suurmeijer L., Cleutjens C. B., Trapman J. Characterization of the human kallikrein locus. Genomics. 1992 Sep;14(1):6–11. doi: 10.1016/s0888-7543(05)80275-7. [DOI] [PubMed] [Google Scholar]
- Sampaio C. A., Sampaio M. U., Prado E. S. Active-site titration of horse urinary kallikrein. Hoppe Seylers Z Physiol Chem. 1984 Mar;365(3):297–302. doi: 10.1515/bchm2.1984.365.1.297. [DOI] [PubMed] [Google Scholar]
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
- Shimamoto K., Chao J., Margolius H. S. The radioimmunoassay of human urinary kallikrein and comparisons with kallikrein activity measurements. J Clin Endocrinol Metab. 1980 Oct;51(4):840–848. doi: 10.1210/jcem-51-4-840. [DOI] [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Worthy K., Figueroa C. D., Dieppe P. A., Bhoola K. D. Kallikreins and kinins: mediators in inflammatory joint disease? Int J Exp Pathol. 1990 Aug;71(4):587–601. [PMC free article] [PubMed] [Google Scholar]
- Zhou G. X., Chao L., Chao J. Kallistatin: a novel human tissue kallikrein inhibitor. Purification, characterization, and reactive center sequence. J Biol Chem. 1992 Dec 25;267(36):25873–25880. [PubMed] [Google Scholar]