Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 1;339(Pt 3):525–531.

Structural characterization of DNA and RNA sequences recognized by the gene 5 protein of bacteriophage fd.

A W Oliver 1, G G Kneale 1
PMCID: PMC1220186  PMID: 10215589

Abstract

The single-stranded DNA sequence d(GT5G4CT4C) occurs close to the origin of replication within the intergenic region of the viral strand of bacteriophage fd. The RNA analogue of this sequence r(GU5G4CU4C) forms part of the untranslated leader sequence of the gene 2 mRNA and is specifically bound by the fd gene 5 protein in its role as a translational repressor. The structure of these sequences is likely to have an important role in the control of both DNA replication and RNA translation in the phage. We show that this 16 nt sequence, in both a DNA and an RNA context, can exist in a structured and unstructured form as determined by high-resolution gel filtration and non-denaturing gel electrophoresis. The CD spectrum of the structured form is characteristic of parallel guanine tetraplexes. The structured form of the DNA sequence melts at approx. 47 degrees C in the presence of Na+ ions but the structure is stabilized up to 75 degrees C in the presence of K+ ions. The RNA structure is more stable than the equivalent DNA structure (melting temperature approx. 62 degrees C), and its stability is further enhanced in the presence of K+ ions. Two of the central guanine residues are fully protected from cleavage as determined by dimethyl sulphate protection experiments, whereas methylation interference studies show that methylation of any of the four central guanine residues inhibits structure formation. Our results demonstrate that the structured form of the nucleic acid is mediated through the formation of a guanine-tetraplex core region, in RNA this might be further stabilized by the presence of weaker uracil quartets.

Full Text

The Full Text of this article is available as a PDF (164.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboul-ela F., Murchie A. I., Norman D. G., Lilley D. M. Solution structure of a parallel-stranded tetraplex formed by d(TG4T) in the presence of sodium ions by nuclear magnetic resonance spectroscopy. J Mol Biol. 1994 Oct 28;243(3):458–471. doi: 10.1006/jmbi.1994.1672. [DOI] [PubMed] [Google Scholar]
  2. Balagurumoorthy P., Brahmachari S. K., Mohanty D., Bansal M., Sasisekharan V. Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res. 1992 Aug 11;20(15):4061–4067. doi: 10.1093/nar/20.15.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheong C., Moore P. B. Solution structure of an unusually stable RNA tetraplex containing G- and U-quartet structures. Biochemistry. 1992 Sep 15;31(36):8406–8414. doi: 10.1021/bi00151a003. [DOI] [PubMed] [Google Scholar]
  4. Clark C. L., Cecil P. K., Singh D., Gray D. M. CD, absorption and thermodynamic analysis of repeating dinucleotide DNA, RNA and hybrid duplexes [d/r(AC)]12.[d/r(GT/U)]12 and the influence of phosphorothioate substitution. Nucleic Acids Res. 1997 Oct 15;25(20):4098–4105. doi: 10.1093/nar/25.20.4098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GELLERT M., LIPSETT M. N., DAVIES D. R. Helix formation by guanylic acid. Proc Natl Acad Sci U S A. 1962 Dec 15;48:2013–2018. doi: 10.1073/pnas.48.12.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gray C. W. Three-dimensional structure of complexes of single-stranded DNA-binding proteins with DNA. IKe and fd gene 5 proteins form left-handed helices with single-stranded DNA. J Mol Biol. 1989 Jul 5;208(1):57–64. doi: 10.1016/0022-2836(89)90087-9. [DOI] [PubMed] [Google Scholar]
  7. Guo Q., Lu M., Marky L. A., Kallenbach N. R. Interaction of the dye ethidium bromide with DNA containing guanine repeats. Biochemistry. 1992 Mar 10;31(9):2451–2455. doi: 10.1021/bi00124a002. [DOI] [PubMed] [Google Scholar]
  8. Hardin C. C., Henderson E., Watson T., Prosser J. K. Monovalent cation induced structural transitions in telomeric DNAs: G-DNA folding intermediates. Biochemistry. 1991 May 7;30(18):4460–4472. doi: 10.1021/bi00232a013. [DOI] [PubMed] [Google Scholar]
  9. Jin R. Z., Breslauer K. J., Jones R. A., Gaffney B. L. Tetraplex formation of a guanine-containing nonameric DNA fragment. Science. 1990 Oct 26;250(4980):543–546. doi: 10.1126/science.2237404. [DOI] [PubMed] [Google Scholar]
  10. Kim J., Cheong C., Moore P. B. Tetramerization of an RNA oligonucleotide containing a GGGG sequence. Nature. 1991 May 23;351(6324):331–332. doi: 10.1038/351331a0. [DOI] [PubMed] [Google Scholar]
  11. Laughlan G., Murchie A. I., Norman D. G., Moore M. H., Moody P. C., Lilley D. M., Luisi B. The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science. 1994 Jul 22;265(5171):520–524. doi: 10.1126/science.8036494. [DOI] [PubMed] [Google Scholar]
  12. Lu M., Guo Q., Kallenbach N. R. Structure and stability of sodium and potassium complexes of dT4G4 and dT4G4T. Biochemistry. 1992 Mar 10;31(9):2455–2459. doi: 10.1021/bi00124a003. [DOI] [PubMed] [Google Scholar]
  13. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  14. Michel B., Zinder N. D. In vitro binding of the bacteriophage f1 gene V protein to the gene II RNA-operator and its DNA analog. Nucleic Acids Res. 1989 Sep 25;17(18):7333–7344. doi: 10.1093/nar/17.18.7333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Michel B., Zinder N. D. Translational repression in bacteriophage f1: characterization of the gene V protein target on the gene II mRNA. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4002–4006. doi: 10.1073/pnas.86.11.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Model P., McGill C., Mazur B., Fulford W. D. The replication of bacteriophage f1: gene V protein regulates the synthesis of gene II protein. Cell. 1982 Jun;29(2):329–335. doi: 10.1016/0092-8674(82)90149-0. [DOI] [PubMed] [Google Scholar]
  17. Oliver A. W., Kneale G. G. Preferential binding of the fd gene 5 protein to a structured form of the single-stranded DNA sequence d(GT5G4CT4C). Biochem Soc Trans. 1997 Nov;25(4):S643–S643. doi: 10.1042/bst025s643. [DOI] [PubMed] [Google Scholar]
  18. Rhodes D., Giraldo R. Telomere structure and function. Curr Opin Struct Biol. 1995 Jun;5(3):311–322. doi: 10.1016/0959-440x(95)80092-1. [DOI] [PubMed] [Google Scholar]
  19. Sen D., Gilbert W. A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature. 1990 Mar 29;344(6265):410–414. doi: 10.1038/344410a0. [DOI] [PubMed] [Google Scholar]
  20. Sen D., Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988 Jul 28;334(6180):364–366. doi: 10.1038/334364a0. [DOI] [PubMed] [Google Scholar]
  21. Sundquist W. I., Klug A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature. 1989 Dec 14;342(6251):825–829. doi: 10.1038/342825a0. [DOI] [PubMed] [Google Scholar]
  22. Venczel E. A., Sen D. Parallel and antiparallel G-DNA structures from a complex telomeric sequence. Biochemistry. 1993 Jun 22;32(24):6220–6228. doi: 10.1021/bi00075a015. [DOI] [PubMed] [Google Scholar]
  23. Williamson J. R., Raghuraman M. K., Cech T. R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell. 1989 Dec 1;59(5):871–880. doi: 10.1016/0092-8674(89)90610-7. [DOI] [PubMed] [Google Scholar]
  24. Yen T. S., Webster R. E. Translational control of bacteriophage f1 gene II and gene X proteins by gene V protein. Cell. 1982 Jun;29(2):337–345. doi: 10.1016/0092-8674(82)90150-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES