Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 1;339(Pt 3):533–540.

1-[N, O-bis-(5-isoquinolinesulphonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazine (KN-62), an inhibitor of calcium-dependent camodulin protein kinase II, inhibits both insulin- and hypoxia-stimulated glucose transport in skeletal muscle.

J T Brozinick Jr 1, T H Reynolds 1, D Dean 1, G Cartee 1, S W Cushman 1
PMCID: PMC1220187  PMID: 10215590

Abstract

Previous studies have indicated a role for calmodulin in hypoxia-and insulin-stimulated glucose transport. However, since calmodulin interacts with multiple protein targets, it is unknown which of these targets is involved in the regulation of glucose transport. In the present study, we have used the calcium-dependent calmodulin protein kinase II (CAMKII) inhibitor 1-[N, O-bis-(5-isoquinolinesulphonyl) -N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62) to investigate the possible role of this enzyme in the regulation of glucose transport in isolated rat soleus and epitrochlearis muscles. KN-62 did not affect basal 2-deoxyglucose transport, but it did inhibit both insulin- and hypoxia-stimulated glucose transport activity by 46 and 40% respectively. 1-[N,O-Bis-(1, 5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN-04), a structural analogue of KN-62 that does not inhibit CAMKII, had no effect on hypoxia-or insulin-stimulated glucose transport. Accordingly, KN-62 decreased the stimulated cell-surface GLUT4 labelling by a similar extent as the inhibition of glucose transport (insulin, 49% and hypoxia, 54%). Additional experiments showed that KN-62 also inhibited insulin- and hypoxia-stimulated transport by 37 and 40% respectively in isolated rat epitrochlearis (a fast-twitch muscle), indicating that the effect of KN-62 was not limited to the slow-twitch fibres of the soleus. The inhibitory effect of KN-62 on hypoxia-stimulated glucose transport appears to be specific to CAMKII, since KN-62 did not inhibit hypoxia-stimulated 45Ca efflux from muscles pre-loaded with 45Ca, or hypoxia-stimulated glycogen breakdown. Additionally, KN-62 affected neither insulin-stimulated phosphoinositide 3-kinase nor Akt activity, suggesting that the effects of KN-62 are not due to non-specific effects of this inhibitor on these regions of the insulin-signalling cascade. The results of the present study suggest that CAMKII might have a distinct role in insulin- and hypoxia-stimulated glucose transport, possibly in the vesicular trafficking of GLUT4.

Full Text

The Full Text of this article is available as a PDF (159.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brozinick J. T., Jr, Etgen G. J., Jr, Yaspelkis B. B., 3rd, Ivy J. L. The effects of muscle contraction and insulin on glucose-transporter translocation in rat skeletal muscle. Biochem J. 1994 Feb 1;297(Pt 3):539–545. doi: 10.1042/bj2970539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brozinick J. T., Jr, McCoid S. C., Reynolds T. H., Wilson C. M., Stevenson R. W., Cushman S. W., Gibbs E. M. Regulation of cell surface GLUT4 in skeletal muscle of transgenic mice. Biochem J. 1997 Jan 1;321(Pt 1):75–81. doi: 10.1042/bj3210075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cartee G. D., Briggs-Tung C., Holloszy J. O. Diverse effects of calcium channel blockers on skeletal muscle glucose transport. Am J Physiol. 1992 Jul;263(1 Pt 2):R70–R75. doi: 10.1152/ajpregu.1992.263.1.R70. [DOI] [PubMed] [Google Scholar]
  4. Cartee G. D., Douen A. G., Ramlal T., Klip A., Holloszy J. O. Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol (1985) 1991 Apr;70(4):1593–1600. doi: 10.1152/jappl.1991.70.4.1593. [DOI] [PubMed] [Google Scholar]
  5. Chamberlain L. H., Roth D., Morgan A., Burgoyne R. D. Distinct effects of alpha-SNAP, 14-3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis. J Cell Biol. 1995 Sep;130(5):1063–1070. doi: 10.1083/jcb.130.5.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chapman E. R., Hanson P. I., An S., Jahn R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J Biol Chem. 1995 Oct 6;270(40):23667–23671. doi: 10.1074/jbc.270.40.23667. [DOI] [PubMed] [Google Scholar]
  7. Cheatham B., Volchuk A., Kahn C. R., Wang L., Rhodes C. J., Klip A. Insulin-stimulated translocation of GLUT4 glucose transporters requires SNARE-complex proteins. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15169–15173. doi: 10.1073/pnas.93.26.15169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clausen T., Andersen T. L., Stürup-Johansen M., Petkova O. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. XI. The effect of vanadate on 45Ca-efflux and sugar transport in adipose tissue and skeletal muscle. Biochim Biophys Acta. 1981 Aug 20;646(2):261–267. doi: 10.1016/0005-2736(81)90332-1. [DOI] [PubMed] [Google Scholar]
  9. Clausen T., Elbrink J., Dahl-Hansen A. B. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. IX. The role of cellular calcium in the activation of the glucose transport system in rat soleus muscle. Biochim Biophys Acta. 1975 Jan 28;375(2):292–308. doi: 10.1016/0005-2736(75)90197-2. [DOI] [PubMed] [Google Scholar]
  10. Colbran R. J., Schworer C. M., Hashimoto Y., Fong Y. L., Rich D. P., Smith M. K., Soderling T. R. Calcium/calmodulin-dependent protein kinase II. Biochem J. 1989 Mar 1;258(2):313–325. doi: 10.1042/bj2580313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Colbran R. J., Soderling T. R. Calcium/calmodulin-dependent protein kinase II. Curr Top Cell Regul. 1990;31:181–221. doi: 10.1016/b978-0-12-152831-7.50007-x. [DOI] [PubMed] [Google Scholar]
  12. Colombo M. I., Beron W., Stahl P. D. Calmodulin regulates endosome fusion. J Biol Chem. 1997 Mar 21;272(12):7707–7712. doi: 10.1074/jbc.272.12.7707. [DOI] [PubMed] [Google Scholar]
  13. Colombo M. I., Taddese M., Whiteheart S. W., Stahl P. D. A possible predocking attachment site for N-ethylmaleimide-sensitive fusion protein. Insights from in vitro endosome fusion. J Biol Chem. 1996 Aug 2;271(31):18810–18816. doi: 10.1074/jbc.271.31.18810. [DOI] [PubMed] [Google Scholar]
  14. Cushman S. W., Wardzala L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem. 1980 May 25;255(10):4758–4762. [PubMed] [Google Scholar]
  15. Fukunaga K., Goto S., Miyamoto E. Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase II in rat brain and various tissues. J Neurochem. 1988 Oct;51(4):1070–1078. doi: 10.1111/j.1471-4159.1988.tb03070.x. [DOI] [PubMed] [Google Scholar]
  16. Goodyear L. J., Chang P. Y., Sherwood D. J., Dufresne S. D., Moller D. E. Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle. Am J Physiol. 1996 Aug;271(2 Pt 1):E403–E408. doi: 10.1152/ajpendo.1996.271.2.E403. [DOI] [PubMed] [Google Scholar]
  17. Henriksen E. J., Bourey R. E., Rodnick K. J., Koranyi L., Permutt M. A., Holloszy J. O. Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. Am J Physiol. 1990 Oct;259(4 Pt 1):E593–E598. doi: 10.1152/ajpendo.1990.259.4.E593. [DOI] [PubMed] [Google Scholar]
  18. Henriksen E. J., Holloszy J. O. Effect of diffusion distance on measurement of rat skeletal muscle glucose transport in vitro. Acta Physiol Scand. 1991 Dec;143(4):381–386. doi: 10.1111/j.1748-1716.1991.tb09249.x. [DOI] [PubMed] [Google Scholar]
  19. Holloszy J. O., Hansen P. A. Regulation of glucose transport into skeletal muscle. Rev Physiol Biochem Pharmacol. 1996;128:99–193. doi: 10.1007/3-540-61343-9_8. [DOI] [PubMed] [Google Scholar]
  20. James P., Vorherr T., Carafoli E. Calmodulin-binding domains: just two faced or multi-faceted? Trends Biochem Sci. 1995 Jan;20(1):38–42. doi: 10.1016/s0968-0004(00)88949-5. [DOI] [PubMed] [Google Scholar]
  21. Joyal J. L., Burks D. J., Pons S., Matter W. F., Vlahos C. J., White M. F., Sacks D. B. Calmodulin activates phosphatidylinositol 3-kinase. J Biol Chem. 1997 Nov 7;272(45):28183–28186. doi: 10.1074/jbc.272.45.28183. [DOI] [PubMed] [Google Scholar]
  22. Joyal J. L., Crimmins D. L., Thoma R. S., Sacks D. B. Identification of insulin-stimulated phosphorylation sites on calmodulin. Biochemistry. 1996 May 21;35(20):6267–6275. doi: 10.1021/bi9600198. [DOI] [PubMed] [Google Scholar]
  23. Joyal J. L., Sacks D. B. Insulin-dependent phosphorylation of calmodulin in rat hepatocytes. J Biol Chem. 1994 Nov 25;269(47):30039–30048. [PubMed] [Google Scholar]
  24. Kohn A. D., Summers S. A., Birnbaum M. J., Roth R. A. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem. 1996 Dec 6;271(49):31372–31378. doi: 10.1074/jbc.271.49.31372. [DOI] [PubMed] [Google Scholar]
  25. Lee A. D., Gulve E. A., Chen M., Schluter J., Holloszy J. O. Effects of Ca2+ ionophore ionomycin on insulin-stimulated and basal glucose transport in muscle. Am J Physiol. 1995 Apr;268(4 Pt 2):R997–1002. doi: 10.1152/ajpregu.1995.268.4.R997. [DOI] [PubMed] [Google Scholar]
  26. Li P. M., Fukazawa H., Mizuno S., Uehara Y. Evaluation of protein kinase inhibitors in an assay system containing multiple protein kinase activities. Anticancer Res. 1993 Nov-Dec;13(6A):1957–1964. [PubMed] [Google Scholar]
  27. Matovcik L. M., Karapetian O., Czernik A. J., Marino C. R., Kinder B. K., Gorelick F. S. Antibodies to an epitope on synapsin I detect a protein associated with the endocytic compartment in non-neuronal cells. Eur J Cell Biol. 1994 Dec;65(2):327–340. [PubMed] [Google Scholar]
  28. Munshi H. G., Burks D. J., Joyal J. L., White M. F., Sacks D. B. Ca2+ regulates calmodulin binding to IQ motifs in IRS-1. Biochemistry. 1996 Dec 10;35(49):15883–15889. doi: 10.1021/bi962107y. [DOI] [PubMed] [Google Scholar]
  29. Oatey P. B., Van Weering D. H., Dobson S. P., Gould G. W., Tavaré J. M. GLUT4 vesicle dynamics in living 3T3 L1 adipocytes visualized with green-fluorescent protein. Biochem J. 1997 Nov 1;327(Pt 3):637–642. doi: 10.1042/bj3270637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Olson A. L., Knight J. B., Pessin J. E. Syntaxin 4, VAMP2, and/or VAMP3/cellubrevin are functional target membrane and vesicle SNAP receptors for insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol. 1997 May;17(5):2425–2435. doi: 10.1128/mcb.17.5.2425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Passonneau J. V., Lauderdale V. R. A comparison of three methods of glycogen measurement in tissues. Anal Biochem. 1974 Aug;60(2):405–412. doi: 10.1016/0003-2697(74)90248-6. [DOI] [PubMed] [Google Scholar]
  32. Pierre P., Scheel J., Rickard J. E., Kreis T. E. CLIP-170 links endocytic vesicles to microtubules. Cell. 1992 Sep 18;70(6):887–900. doi: 10.1016/0092-8674(92)90240-d. [DOI] [PubMed] [Google Scholar]
  33. Ploug T., Stallknecht B. M., Pedersen O., Kahn B. B., Ohkuwa T., Vinten J., Galbo H. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am J Physiol. 1990 Dec;259(6 Pt 1):E778–E786. doi: 10.1152/ajpendo.1990.259.6.E778. [DOI] [PubMed] [Google Scholar]
  34. Putkey J. A., Draetta G. F., Slaughter G. R., Klee C. B., Cohen P., Stull J. T., Means A. R. Genetically engineered calmodulins differentially activate target enzymes. J Biol Chem. 1986 Jul 25;261(21):9896–9903. [PubMed] [Google Scholar]
  35. Sacks D. B., Mazus B., Joyal J. L. The activity of calmodulin is altered by phosphorylation: modulation of calmodulin function by the site of phosphate incorporation. Biochem J. 1995 Nov 15;312(Pt 1):197–204. doi: 10.1042/bj3120197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schatzman R. C., Raynor R. L., Kuo J. F. N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide(W-7), a calmodulin antagonist, also inhibits phospholipid-sensitive calcium-dependent protein kinase. Biochim Biophys Acta. 1983 Jan 4;755(1):144–147. doi: 10.1016/0304-4165(83)90284-2. [DOI] [PubMed] [Google Scholar]
  37. Schulman H., Hanson P. I. Multifunctional Ca2+/calmodulin-dependent protein kinase. Neurochem Res. 1993 Jan;18(1):65–77. doi: 10.1007/BF00966924. [DOI] [PubMed] [Google Scholar]
  38. Schweitzer E. S., Sanderson M. J., Wasterlain C. G. Inhibition of regulated catecholamine secretion from PC12 cells by the Ca2+/calmodulin kinase II inhibitor KN-62. J Cell Sci. 1995 Jul;108(Pt 7):2619–2628. doi: 10.1242/jcs.108.7.2619. [DOI] [PubMed] [Google Scholar]
  39. Scott J. D., Soderling T. R. Serine/threonine protein kinases. Curr Opin Neurobiol. 1992 Jun;2(3):289–295. doi: 10.1016/0959-4388(92)90117-4. [DOI] [PubMed] [Google Scholar]
  40. Shashkin P., Koshkin A., Langley D., Ren J. M., Westerblad H., Katz A. Effects of CGS 9343B (a putative calmodulin antagonist) on isolated skeletal muscle. Dissociation of signaling pathways for insulin-mediated activation of glycogen synthase and hexose transport. J Biol Chem. 1995 Oct 27;270(43):25613–25618. doi: 10.1074/jbc.270.43.25613. [DOI] [PubMed] [Google Scholar]
  41. Sørensen S. S., Christensen F., Clausen T. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. X. Effect of glucose transport stimuli on the efflux of isotopically labelled calcium and 3-O-methylglucose from soleus muscles and epididymal fat pads of the rat. Biochim Biophys Acta. 1980 Nov 4;602(2):433–445. doi: 10.1016/0005-2736(80)90322-3. [DOI] [PubMed] [Google Scholar]
  42. Südhof T. C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 1995 Jun 22;375(6533):645–653. doi: 10.1038/375645a0. [DOI] [PubMed] [Google Scholar]
  43. Tsutsui M., Yanagihara N., Fukunaga K., Minami K., Nakashima Y., Kuroiwa A., Miyamoto E., Izumi F. Ca(2+)/calmodulin-dependent protein kinase II inhibitor KN-62 inhibits adrenal medullary chromaffin cell functions independent of its action on the kinase. J Neurochem. 1996 Jun;66(6):2517–2522. doi: 10.1046/j.1471-4159.1996.66062517.x. [DOI] [PubMed] [Google Scholar]
  44. Törnquist K., Ekokoski E. Inhibition of agonist-mediated calcium entry by calmodulin antagonists and by the Ca2+/calmodulin kinase II inhibitor KN-62. Studies with thyroid FRTL-5 cells. J Endocrinol. 1996 Jan;148(1):131–138. doi: 10.1677/joe.0.1480131. [DOI] [PubMed] [Google Scholar]
  45. Vannucci S. J., Nishimura H., Satoh S., Cushman S. W., Holman G. D., Simpson I. A. Cell surface accessibility of GLUT4 glucose transporters in insulin-stimulated rat adipose cells. Modulation by isoprenaline and adenosine. Biochem J. 1992 Nov 15;288(Pt 1):325–330. doi: 10.1042/bj2880325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. White M. F., Kahn C. R. The insulin signaling system. J Biol Chem. 1994 Jan 7;269(1):1–4. [PubMed] [Google Scholar]
  47. Williams J. P., Jo H., Sacks D. B., Crimmins D. L., Thoma R. S., Hunnicutt R. E., Radding W., Sharma R. K., McDonald J. M. Tyrosine-phosphorylated calmodulin has reduced biological activity. Arch Biochem Biophys. 1994 Nov 15;315(1):119–126. doi: 10.1006/abbi.1994.1479. [DOI] [PubMed] [Google Scholar]
  48. Woodgett J. R., Cohen P., Yamauchi T., Fujisawa H. Comparison of calmodulin-dependent glycogen synthase kinase from skeletal muscle and calmodulin-dependent protein kinase-II from brain. FEBS Lett. 1984 May 7;170(1):49–54. doi: 10.1016/0014-5793(84)81366-6. [DOI] [PubMed] [Google Scholar]
  49. Yeh J. I., Gulve E. A., Rameh L., Birnbaum M. J. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J Biol Chem. 1995 Feb 3;270(5):2107–2111. doi: 10.1074/jbc.270.5.2107. [DOI] [PubMed] [Google Scholar]
  50. Youn J. H., Gulve E. A., Henriksen E. J., Holloszy J. O. Interactions between effects of W-7, insulin, and hypoxia on glucose transport in skeletal muscle. Am J Physiol. 1994 Oct;267(4 Pt 2):R888–R894. doi: 10.1152/ajpregu.1994.267.4.R888. [DOI] [PubMed] [Google Scholar]
  51. Youn J. H., Gulve E. A., Holloszy J. O. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. Am J Physiol. 1991 Mar;260(3 Pt 1):C555–C561. doi: 10.1152/ajpcell.1991.260.3.C555. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES