Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 1;339(Pt 3):589–597.

Molecular and enzymic properties of recombinant 1, 2-alpha-mannosidase from Aspergillus saitoi overexpressed in Aspergillus oryzae cells.

E Ichishima 1, N Taya 1, M Ikeguchi 1, Y Chiba 1, M Nakamura 1, C Kawabata 1, T Inoue 1, K Takahashi 1, T Minetoki 1, K Ozeki 1, C Kumagai 1, K Gomi 1, T Yoshida 1, T Nakajima 1
PMCID: PMC1220194  PMID: 10215597

Abstract

For the construction of an overexpression system of the intracellular 1,2-alpha-mannosidase (EC 3.2.1.113) gene (msdS) from Aspergillus saitoi (now designated Aspergillus phoenicis), the N-terminal signal sequence of the gene was replaced with that of the aspergillopepsin I (EC 3.4.23.18) gene (apnS) signal, one of the same strains as described previously. Then the fused 1, 2-alpha-mannosidase gene (f-msdS) was inserted into the NotI site between P-No8142 and T-agdA in the plasmid pNAN 8142 (9.5 kbp) and thus the Aspergillus oryzae expression plasmid pNAN-AM1 (11.2 kbp) was constructed. The fused f-msdS gene has been overexpressed in a transformant A. oryzae niaD AM1 cell. The recombinant enzyme expressed in A. oryzae cells was purified to homogeneity in two steps. The system is capable of making as much as about 320 mg of the enzyme/litre of culture. The recombinant enzyme has activity with methyl-2-O-alpha-d-mannopyranosyl alpha-D-mannopyranoside at pH 5.0, while no activity was determined with methyl-3-O-alpha-D-mannopyranosyl alpha-D-mannopyranoside or methyl-6-O-alpha-D-mannopyranosyl alpha-D-mannopyranoside. The substrate specificity of the enzyme was analysed by using pyridylaminated (PA)-oligomannose-type sugar chains, Man9-6(GlcNAc)2-PA (Man is mannose; GlcNAc is N-acetylglucosamine). The enzyme hydrolysed Man8GlcNAc2-PA (type 'M8A') fastest, and 'M6C' ¿Manalpha1-3[Manalpha1-2Manalpha1-3(Manalpha1-6) Manalpha1-6]Manbeta1- 4GlcNAcbeta1-4GlcNAc-PA¿ slowest, among the PA-sugar chains. Molecular-mass values of the enzyme were determined to be 63 kDa by SDS/PAGE and 65 kDa by gel filtration on Superose 12 respectively. The pI value of the enzyme was 4.6. The N-terminal amino acid sequence of the enzyme was GSTQSRADAIKAAFSHAWDGYLQY, and sequence analysis indicated that the signal peptide from apnS gene was removed. The molar absorption coefficient, epsilon, at 280 nm was determined as 91539 M-1.cm-1. Contents of the secondary structure (alpha-helix, beta-structure and the remainder of the enzyme) by far-UV CD determination were about 55, 38 and 7% respectively. The melting temperature, Tm, of the enzyme was 71 degrees C by differential scanning calorimetry. The calorimetric enthalpy, DeltaHcal, of the enzyme was calculated as 13.3 kJ.kg of protein-1. Determination of 1 g-atom of Ca2+/mol of enzyme was performed by atomic-absorption spectrophotometry.

Full Text

The Full Text of this article is available as a PDF (219.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boel E., Hansen M. T., Hjort I., Høegh I., Fiil N. P. Two different types of intervening sequences in the glucoamylase gene from Aspergillus niger. EMBO J. 1984 Jul;3(7):1581–1585. doi: 10.1002/j.1460-2075.1984.tb02014.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Camirand A., Heysen A., Grondin B., Herscovics A. Glycoprotein biosynthesis in Saccharomyces cerevisiae. Isolation and characterization of the gene encoding a specific processing alpha-mannosidase. J Biol Chem. 1991 Aug 15;266(23):15120–15127. [PubMed] [Google Scholar]
  3. Chiba Y., Suzuki M., Yoshida S., Yoshida A., Ikenaga H., Takeuchi M., Jigami Y., Ichishima E. Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J Biol Chem. 1998 Oct 9;273(41):26298–26304. doi: 10.1074/jbc.273.41.26298. [DOI] [PubMed] [Google Scholar]
  4. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  5. Fujita A., Yoshida T., Ichishima E. Five crucial carboxyl residues of 1,2-alpha-mannosidase from Aspergillus saitoi (A. phoenicis), a food microorganism, are identified by site-directed mutagenesis. Biochem Biophys Res Commun. 1997 Sep 29;238(3):779–783. doi: 10.1006/bbrc.1997.7389. [DOI] [PubMed] [Google Scholar]
  6. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  7. Hamagashira N., Oku H., Mega T., Hase S. Purification and characterization of hen oviduct alpha 1,2-mannosidase. J Biochem. 1996 May;119(5):998–1003. doi: 10.1093/oxfordjournals.jbchem.a021341. [DOI] [PubMed] [Google Scholar]
  8. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996 Jun 1;316(Pt 2):695–696. doi: 10.1042/bj3160695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herscovics A., Schneikert J., Athanassiadis A., Moremen K. W. Isolation of a mouse Golgi mannosidase cDNA, a member of a gene family conserved from yeast to mammals. J Biol Chem. 1994 Apr 1;269(13):9864–9871. [PubMed] [Google Scholar]
  11. Ichishima E., Arai M., Shigematsu Y., Kumagai H., Sumida-Tanaka R. Purification of an acidic alpha-D-mannosidase from Aspergillus saitoi and specific cleavage of 1,2-alpha-D-mannosidic linkage in yeast mannan. Biochim Biophys Acta. 1981 Mar 13;658(1):45–53. doi: 10.1016/0005-2744(81)90248-5. [DOI] [PubMed] [Google Scholar]
  12. Inoue T., Yoshida T., Ichishima E. Molecular cloning and nucleotide sequence of the 1,2-alpha-D-mannosidase gene, msdS, from Aspergillus saitoi and expression of the gene in yeast cells. Biochim Biophys Acta. 1995 Dec 6;1253(2):141–145. doi: 10.1016/0167-4838(95)00195-6. [DOI] [PubMed] [Google Scholar]
  13. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jelinek-Kelly S., Herscovics A. Glycoprotein biosynthesis in Saccharomyces cerevisiae. Purification of the alpha-mannosidase which removes one specific mannose residue from Man9GlcNAc. J Biol Chem. 1988 Oct 15;263(29):14757–14763. [PubMed] [Google Scholar]
  15. Kondo A., Suzuki J., Kuraya N., Hase S., Kato I., Ikenaka T. Improved method for fluorescence labeling of sugar chains with sialic acid residues. Agric Biol Chem. 1990 Aug;54(8):2169–2170. [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lal A., Pang P., Kalelkar S., Romero P. A., Herscovics A., Moremen K. W. Substrate specificities of recombinant murine Golgi alpha1, 2-mannosidases IA and IB and comparison with endoplasmic reticulum and Golgi processing alpha1,2-mannosidases. Glycobiology. 1998 Oct;8(10):981–995. doi: 10.1093/glycob/8.10.981. [DOI] [PubMed] [Google Scholar]
  19. Lal A., Schutzbach J. S., Forsee W. T., Neame P. J., Moremen K. W. Isolation and expression of murine and rabbit cDNAs encoding an alpha 1,2-mannosidase involved in the processing of asparagine-linked oligosaccharides. J Biol Chem. 1994 Apr 1;269(13):9872–9881. [PubMed] [Google Scholar]
  20. Lee B. R., Kitamoto K., Yamada O., Kumagai C. Cloning, characterization and overproduction of nuclease S1 gene (nucS) from Aspergillus oryzae. Appl Microbiol Biotechnol. 1995 Dec;44(3-4):425–431. doi: 10.1007/BF00169939. [DOI] [PubMed] [Google Scholar]
  21. Lipari F., Herscovics A. Role of the cysteine residues in the alpha1,2-mannosidase involved in N-glycan biosynthesis in Saccharomyces cerevisiae. The conserved Cys340 and Cys385 residues form an essential disulfide bond. J Biol Chem. 1996 Nov 1;271(44):27615–27622. doi: 10.1074/jbc.271.44.27615. [DOI] [PubMed] [Google Scholar]
  22. Minetoki T., Gomi K., Kitamoto K., Kumagai C., Tamura G. Nucleotide sequence and expression of alpha-glucosidase-encoding gene (agdA) from Aspergillus oryzae. Biosci Biotechnol Biochem. 1995 Aug;59(8):1516–1521. doi: 10.1271/bbb.59.1516. [DOI] [PubMed] [Google Scholar]
  23. Minetoki T., Nunokawa Y., Gomi K., Kitamoto K., Kumagai C., Tamura G. Deletion analysis of promoter elements of the Aspergillus oryzae agdA gene encoding alpha-glucosidase. Curr Genet. 1996 Nov;30(5):432–438. doi: 10.1007/s002940050153. [DOI] [PubMed] [Google Scholar]
  24. Moremen K. W., Trimble R. B., Herscovics A. Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology. 1994 Apr;4(2):113–125. doi: 10.1093/glycob/4.2.113. [DOI] [PubMed] [Google Scholar]
  25. Nordén N. E., Lundblad A., Ockerman P. A., Jolly R. D. Mannosidosis in Angus cattle: partial characterization of two mannose containing oligosaccharides. FEBS Lett. 1973 Sep 15;35(2):209–212. doi: 10.1016/0014-5793(73)80286-8. [DOI] [PubMed] [Google Scholar]
  26. Ozeki K., Kanda A., Hamachi M., Nunokawa Y. Construction of a promoter probe vector autonomously maintained in Aspergillus and characterization of promoter regions derived from A. niger and A. oryzae genomes. Biosci Biotechnol Biochem. 1996 Mar;60(3):383–389. doi: 10.1271/bbb.60.383. [DOI] [PubMed] [Google Scholar]
  27. Phillips N. C., Robinson D., Winchester B. G., Jolly R. D. Mannosidosis in Angus cattle. The enzymic defect. Biochem J. 1974 Feb;137(2):363–371. doi: 10.1042/bj1370363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schena M., Picard D., Yamamoto K. R. Vectors for constitutive and inducible gene expression in yeast. Methods Enzymol. 1991;194:389–398. doi: 10.1016/0076-6879(91)94029-c. [DOI] [PubMed] [Google Scholar]
  29. Schneikert J., Herscovics A. Characterization of a novel mouse recombinant processing alpha-mannosidase. Glycobiology. 1994 Aug;4(4):445–450. doi: 10.1093/glycob/4.4.445. [DOI] [PubMed] [Google Scholar]
  30. Schneikert J., Herscovics A. Two naturally occurring mouse alpha-1,2-mannosidase IB cDNA clones differ in three point mutations. Mutation of Phe592 to Ser592 is sufficient to abolish enzyme activity. J Biol Chem. 1995 Jul 28;270(30):17736–17740. doi: 10.1074/jbc.270.30.17736. [DOI] [PubMed] [Google Scholar]
  31. Shintani T., Ichishima E. Primary structure of aspergillopepsin I deduced from nucleotide sequence of the gene and aspartic acid-76 is an essential active site of the enzyme for trypsinogen activation. Biochim Biophys Acta. 1994 Feb 16;1204(2):257–264. doi: 10.1016/0167-4838(94)90016-7. [DOI] [PubMed] [Google Scholar]
  32. Shintani T., Kobayashi M., Ichishima E. Characterization of the S1 subsite specificity of aspergillopepsin I by site-directed mutagenesis. J Biochem. 1996 Nov;120(5):974–981. doi: 10.1093/oxfordjournals.jbchem.a021515. [DOI] [PubMed] [Google Scholar]
  33. Shintani T., Nomura K., Ichishima E. Engineering of porcine pepsin. Alteration of S1 substrate specificity of pepsin to those of fungal aspartic proteinases by site-directed mutagenesis. J Biol Chem. 1997 Jul 25;272(30):18855–18861. doi: 10.1074/jbc.272.30.18855. [DOI] [PubMed] [Google Scholar]
  34. Teare J. M., Islam R., Flanagan R., Gallagher S., Davies M. G., Grabau C. Measurement of nucleic acid concentrations using the DyNA Quant and the GeneQuant. Biotechniques. 1997 Jun;22(6):1170–1174. doi: 10.2144/97226pf02. [DOI] [PubMed] [Google Scholar]
  35. Tilburn J., Scazzocchio C., Taylor G. G., Zabicky-Zissman J. H., Lockington R. A., Davies R. W. Transformation by integration in Aspergillus nidulans. Gene. 1983 Dec;26(2-3):205–221. doi: 10.1016/0378-1119(83)90191-9. [DOI] [PubMed] [Google Scholar]
  36. Yamashita K., Ichishima E., Arai M., Kobata A. An alpha-mannosidase purified from Aspergillus saitoi is specific for alpha 1,2 linkages. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1335–1342. doi: 10.1016/0006-291x(80)90097-2. [DOI] [PubMed] [Google Scholar]
  37. Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]
  38. Yoshida T., Ichishima E. Molecular cloning and nucleotide sequence of the genomic DNA for 1,2-alpha-D-mannosidase gene, msdC from Penicillium citrinum. Biochim Biophys Acta. 1995 Aug 22;1263(2):159–162. doi: 10.1016/0167-4781(95)00101-l. [DOI] [PubMed] [Google Scholar]
  39. Yoshida T., Inoue T., Ichishima E. 1,2-alpha-D-mannosidase from Penicillium citrinum: molecular and enzymic properties of two isoenzymes. Biochem J. 1993 Mar 1;290(Pt 2):349–354. doi: 10.1042/bj2900349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yoshida T., Maeda K., Kobayashi M., Ichishima E. Chemical modification of Penicillium 1,2-alpha-D-mannosidase by water-soluble carbodi-imide: identification of a catalytically important aspartic acid residue. Biochem J. 1994 Oct 1;303(Pt 1):97–103. doi: 10.1042/bj3030097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yoshida T., Nakajima T., Ichishima E. Overproduction of 1,2-alpha-mannosidase, a glycochain processing enzyme, by Aspergillus oryzae. Biosci Biotechnol Biochem. 1998 Feb;62(2):309–315. doi: 10.1271/bbb.62.309. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES