Abstract
Redox modulation is involved in the regulation of the intracellular free calcium concentration ([Ca2+]i) in several cell types. In thyroid cells, including thyroid FRTL-5 cells, changes in [Ca2+]i regulate important functions. In the present study we investigated the effects of the oxidizing compounds thimerosal and t-butyl hydroperoxide on [Ca2+]i in thyroid FRTL-5 cells. Thimerosal mobilized sequestered calcium, and evoked modest store-dependent calcium entry. Both compounds potently attenuated the increase in [Ca2+]i when store-operated calcium entry was evoked with thapsigargin. The entry of barium was not attenuated. Experiments performed with high extracellular pH, in sodium-free buffer and in the presence of vanadate suggested that thimerosal decreased [Ca2+]i by activating a calcium extrusion mechanism, probably a plasma membrane Ca2+-ATPase. All the observed effects were abrogated by the reducing agent beta-mercaptoethanol. The mechanism of action was apparently mediated via activation of protein kinase C, as thimerosal potently stimulated binding of [3H]phorbol 12, 13-dibutyrate, and was without effect on store-operated calcium entry in cells treated with staurosporine or in cells with down-regulated protein kinase C. Thimerosal did not depolarize the membrane potential, as evaluated using patch-clamp in the whole-cell mode. In immunoprecipitates obtained with an antibody against plasma membrane Ca2+-ATPase, we observed several phosphorylated bands in cells stimulated with thimerosal. In conclusion, we have shown that thimerosal attenuates an increase in [Ca2+]i, probably by activating a plasma membrane Ca2+-ATPase.
Full Text
The Full Text of this article is available as a PDF (176.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramson J. J., Zable A. C., Favero T. G., Salama G. Thimerosal interacts with the Ca2+ release channel ryanodine receptor from skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1995 Dec 15;270(50):29644–29647. doi: 10.1074/jbc.270.50.29644. [DOI] [PubMed] [Google Scholar]
- Ambesi-Impiombato F. S., Parks L. A., Coon H. G. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3455–3459. doi: 10.1073/pnas.77.6.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J. Capacitative calcium entry. Biochem J. 1995 Nov 15;312(Pt 1):1–11. doi: 10.1042/bj3120001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bird G. S., Burgess G. M., Putney J. W., Jr Sulfhydryl reagents and cAMP-dependent kinase increase the sensitivity of the inositol 1,4,5-trisphosphate receptor in hepatocytes. J Biol Chem. 1993 Aug 25;268(24):17917–17923. [PubMed] [Google Scholar]
- Björkman U., Ekholm R. Hydrogen peroxide generation and its regulation in FRTL-5 and porcine thyroid cells. Endocrinology. 1992 Jan;130(1):393–399. doi: 10.1210/endo.130.1.1309340. [DOI] [PubMed] [Google Scholar]
- Blackmore P. F., Waynick L. E., Blackman G. E., Graham C. W., Sherry R. S. Alpha- and beta-adrenergic stimulation of parenchymal cell Ca2+ influx. Influence of extracellular pH. J Biol Chem. 1984 Oct 25;259(20):12322–12325. [PubMed] [Google Scholar]
- Bootman M. D., Taylor C. W., Berridge M. J. The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1992 Dec 15;267(35):25113–25119. [PubMed] [Google Scholar]
- Brynolf K. An enzymatic method for the determination of dCMP in picomol amounts. Anal Biochem. 1976 May 7;72:238–247. doi: 10.1016/0003-2697(76)90526-1. [DOI] [PubMed] [Google Scholar]
- Burch R. M., Luini A., Mais D. E., Corda D., Vanderhoek J. Y., Kohn L. D., Axelrod J. Alpha 1-adrenergic stimulation of arachidonic acid release and metabolism in a rat thyroid cell line. Mediation of cell replication by prostaglandin E2. J Biol Chem. 1986 Aug 25;261(24):11236–11241. [PubMed] [Google Scholar]
- Carafoli E. Calcium pump of the plasma membrane. Physiol Rev. 1991 Jan;71(1):129–153. doi: 10.1152/physrev.1991.71.1.129. [DOI] [PubMed] [Google Scholar]
- Corda D., Marcocci C., Kohn L. D., Axelrod J., Luini A. Association of the changes in cytosolic Ca2+ and iodide efflux induced by thyrotropin and by the stimulation of alpha 1-adrenergic receptors in cultured rat thyroid cells. J Biol Chem. 1985 Aug 5;260(16):9230–9236. [PubMed] [Google Scholar]
- Enyedi A., Verma A. K., Filoteo A. G., Penniston J. T. Protein kinase C activates the plasma membrane Ca2+ pump isoform 4b by phosphorylation of an inhibitory region downstream of the calmodulin-binding domain. J Biol Chem. 1996 Dec 13;271(50):32461–32467. doi: 10.1074/jbc.271.50.32461. [DOI] [PubMed] [Google Scholar]
- Gopalakrishna R., Anderson W. B. Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6758–6762. doi: 10.1073/pnas.86.17.6758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Guillemette G., Segui J. A. Effects of pH, reducing and alkylating reagents on the binding and Ca2+ release activities of inositol 1,4,5-triphosphate in the bovine adrenal cortex. Mol Endocrinol. 1988 Dec;2(12):1249–1255. doi: 10.1210/mend-2-12-1249. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Haverstick D. M., Dicus M., Resnick M. S., Sando J. J., Gray L. S. A role for protein kinase CbetaI in the regulation of Ca2+ entry in Jurkat T cells. J Biol Chem. 1997 Jun 13;272(24):15426–15433. doi: 10.1074/jbc.272.24.15426. [DOI] [PubMed] [Google Scholar]
- Hilly M., Piétri-Rouxel F., Coquil J. F., Guy M., Mauger J. P. Thiol reagents increase the affinity of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1993 Aug 5;268(22):16488–16494. [PubMed] [Google Scholar]
- Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
- Hoyal C. R., Thomas A. P., Forman H. J. Hydroperoxide-induced increases in intracellular calcium due to annexin VI translocation and inactivation of plasma membrane Ca2+-ATPase. J Biol Chem. 1996 Nov 15;271(46):29205–29210. doi: 10.1074/jbc.271.46.29205. [DOI] [PubMed] [Google Scholar]
- Islam M. S., Kindmark H., Larsson O., Berggren P. O. Thiol oxidation by 2,2'-dithiodipyridine causes a reversible increase in cytoplasmic free Ca2+ concentration in pancreatic beta-cells. Role for inositol 1,4,5-trisphosphate-sensitive Ca2+ stores. Biochem J. 1997 Jan 15;321(Pt 2):347–354. doi: 10.1042/bj3210347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Islam M. S., Rorsman P., Berggren P. O. Ca(2+)-induced Ca2+ release in insulin-secreting cells. FEBS Lett. 1992 Jan 27;296(3):287–291. doi: 10.1016/0014-5793(92)80306-2. [DOI] [PubMed] [Google Scholar]
- Jones D. P., Thor H., Smith M. T., Jewell S. A., Orrenius S. Inhibition of ATP-dependent microsomal Ca2+ sequestration during oxidative stress and its prevention by glutathione. J Biol Chem. 1983 May 25;258(10):6390–6393. [PubMed] [Google Scholar]
- Karhapä L., Titievsky A., Kaila K., Törnquist K. Redox modulation of calcium entry and release of intracellular calcium by thimerosal in GH4C1 pituitary cells. Cell Calcium. 1996 Dec;20(6):447–457. doi: 10.1016/s0143-4160(96)90086-x. [DOI] [PubMed] [Google Scholar]
- Khodorov B., Pinelis V., Vergun O., Storozhevykh T., Fajuk D., Vinskaya N., Arsenjeva E., Khaspekov L., Lyzin A., Isaev N. Dramatic effects of external alkalinity on neuronal calcium recovery following a short-duration glutamate challenge: the role of the plasma membrane Ca2+/H+ pump. FEBS Lett. 1995 Sep 11;371(3):249–252. doi: 10.1016/0014-5793(95)00894-f. [DOI] [PubMed] [Google Scholar]
- Kikkawa U., Minakuchi R., Takai Y., Nishizuka Y. Calcium-activated, phospholipid-dependent protein kinase (protein kinase C) from rat brain. Methods Enzymol. 1983;99:288–298. doi: 10.1016/0076-6879(83)99064-x. [DOI] [PubMed] [Google Scholar]
- Kimura T., Okajima F., Sho K., Kobayashi I., Kondo Y. Thyrotropin-induced hydrogen peroxide production in FRTL-5 thyroid cells is mediated not by adenosine 3',5'-monophosphate, but by Ca2+ signaling followed by phospholipase-A2 activation and potentiated by an adenosine derivative. Endocrinology. 1995 Jan;136(1):116–123. doi: 10.1210/endo.136.1.7828520. [DOI] [PubMed] [Google Scholar]
- Kuo T. H., Wang K. K., Carlock L., Diglio C., Tsang W. Phorbol ester induces both gene expression and phosphorylation of the plasma membrane Ca2+ pump. J Biol Chem. 1991 Feb 5;266(4):2520–2525. [PubMed] [Google Scholar]
- Kwan C. Y., Putney J. W., Jr Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. Dissociation by Sr2+ and Ba2+ of agonist-stimulated divalent cation entry from the refilling of the agonist-sensitive intracellular pool. J Biol Chem. 1990 Jan 15;265(2):678–684. [PubMed] [Google Scholar]
- Lippes H. A., Spaulding S. W. Peroxide formation and glucose oxidation in calf thyroid slices: regulation by protein kinase-C and cytosolic free calcium. Endocrinology. 1986 Apr;118(4):1306–1311. doi: 10.1210/endo-118-4-1306. [DOI] [PubMed] [Google Scholar]
- Marcocci C., Luini A., Santisteban P., Grollman E. F. Norepinephrine and thyrotropin stimulation of iodide efflux in FRTL-5 thyroid cells involves metabolites of arachidonic acid and is associated with the iodination of thyroglobulin. Endocrinology. 1987 Mar;120(3):1127–1133. doi: 10.1210/endo-120-3-1127. [DOI] [PubMed] [Google Scholar]
- Merritt J. E., Armstrong W. P., Benham C. D., Hallam T. J., Jacob R., Jaxa-Chamiec A., Leigh B. K., McCarthy S. A., Moores K. E., Rink T. J. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J. 1990 Oct 15;271(2):515–522. doi: 10.1042/bj2710515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Missiaen L., Taylor C. W., Berridge M. J. Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature. 1991 Jul 18;352(6332):241–244. doi: 10.1038/352241a0. [DOI] [PubMed] [Google Scholar]
- Montero M., Garcia-Sancho J., Alverez J. Chemotactic peptide down-regulation of calcium mobilization induced by platelet-activating factor and by leukotriene B4 in human neutrophils is uncovered by protein phosphatase inhibitors. Biochem J. 1994 Oct 15;303(Pt 2):559–566. doi: 10.1042/bj3030559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muallem S., Pandol S. J., Beeker T. G. Modulation of agonist-activated calcium influx by extracellular pH in rat pancreatic acini. Am J Physiol. 1989 Dec;257(6 Pt 1):G917–G924. doi: 10.1152/ajpgi.1989.257.6.G917. [DOI] [PubMed] [Google Scholar]
- Niggli V., Sigel E., Carafoli E. The purified Ca2+ pump of human erythrocyte membranes catalyzes an electroneutral Ca2+-H+ exchange in reconstituted liposomal systems. J Biol Chem. 1982 Mar 10;257(5):2350–2356. [PubMed] [Google Scholar]
- Nofer J. R., Tepel M., Walter M., Seedorf U., Assmann G., Zidek W. Phosphatidylcholine-specific phospholipase C regulates thapsigargin-induced calcium influx in human lymphocytes. J Biol Chem. 1997 Dec 26;272(52):32861–32868. doi: 10.1074/jbc.272.52.32861. [DOI] [PubMed] [Google Scholar]
- Parekh A. B., Penner R. Activation of store-operated calcium influx at resting InsP3 levels by sensitization of the InsP3 receptor in rat basophilic leukaemia cells. J Physiol. 1995 Dec 1;489(Pt 2):377–382. doi: 10.1113/jphysiol.1995.sp021058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parys J. B., Missiaen L., De Smedt H., Droogmans G., Casteels R. Bell-shaped activation of inositol-1,4,5-trisphosphate-induced Ca2+ release by thimerosal in permeabilized A7r5 smooth-muscle cells. Pflugers Arch. 1993 Sep;424(5-6):516–522. doi: 10.1007/BF00374916. [DOI] [PubMed] [Google Scholar]
- Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
- Raspé E., Dumont J. E. Control of the dog thyrocyte plasma membrane iodide permeability by the Ca(2+)-phosphatidylinositol and adenosine 3',5'-monophosphate cascades. Endocrinology. 1994 Sep;135(3):986–995. doi: 10.1210/endo.135.3.8070394. [DOI] [PubMed] [Google Scholar]
- Raspé E., Laurent E., Corvilain B., Verjans B., Erneux C., Dumont J. E. Control of the intracellular Ca(2+)-concentration and the inositol phosphate accumulation in dog thyrocyte primary culture: evidence for different kinetics of Ca(2+)-phosphatidylinositol cascade activation and for involvement in the regulation of H2O2 production. J Cell Physiol. 1991 Feb;146(2):242–250. doi: 10.1002/jcp.1041460208. [DOI] [PubMed] [Google Scholar]
- Rooney T. A., Renard D. C., Sass E. J., Thomas A. P. Oscillatory cytosolic calcium waves independent of stimulated inositol 1,4,5-trisphosphate formation in hepatocytes. J Biol Chem. 1991 Jul 5;266(19):12272–12282. [PubMed] [Google Scholar]
- Saji M., Ikuyama S., Akamizu T., Kohn L. D. Increases in cytosolic Ca++ down regulate thyrotropin receptor gene expression by a mechanism different from the cAMP signal. Biochem Biophys Res Commun. 1991 Apr 15;176(1):94–101. doi: 10.1016/0006-291x(91)90894-d. [DOI] [PubMed] [Google Scholar]
- Sayers L. G., Brown G. R., Michell R. H., Michelangeli F. The effects of thimerosal on calcium uptake and inositol 1,4,5-trisphosphate-induced calcium release in cerebellar microsomes. Biochem J. 1993 Feb 1;289(Pt 3):883–887. doi: 10.1042/bj2890883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sho K., Okajima F., Akiyama H., Shoda Y., Kobayashi I., Kondo Y. Requirement of insulin growth factor I plus hydrocortisone for the regeneration of thyrotropin (TSH)-dependent mechanism of I-efflux and Ca2+ mobilization in FRTL-5 cells during TSH depletion. Endocrinology. 1989 Feb;124(2):598–604. doi: 10.1210/endo-124-2-598. [DOI] [PubMed] [Google Scholar]
- Smallwood J. I., Gügi B., Rasmussen H. Regulation of erythrocyte Ca2+ pump activity by protein kinase C. J Biol Chem. 1988 Feb 15;263(5):2195–2202. [PubMed] [Google Scholar]
- Smallwood J. I., Waisman D. M., Lafreniere D., Rasmussen H. Evidence that the erythrocyte calcium pump catalyzes a Ca2+:nH+ exchange. J Biol Chem. 1983 Sep 25;258(18):11092–11097. [PubMed] [Google Scholar]
- Takada K., Amino N., Tada H., Miyai K. Relationship between proliferation and cell cycle-dependent Ca2+ influx induced by a combination of thyrotropin and insulin-like growth factor-I in rat thyroid cells. J Clin Invest. 1990 Nov;86(5):1548–1555. doi: 10.1172/JCI114874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takasu N., Yamada T., Shimizu Y., Nagasawa Y., Komiya I. Generation of hydrogen peroxide in cultured porcine thyroid cells: synergistic regulation by cytoplasmic free calcium and protein kinase C. J Endocrinol. 1989 Mar;120(3):503–508. doi: 10.1677/joe.0.1200503. [DOI] [PubMed] [Google Scholar]
- Tanaka Y., Tashjian A. H., Jr Thimerosal potentiates Ca2+ release mediated by both the inositol 1,4,5-trisphosphate and the ryanodine receptors in sea urchin eggs. Implications for mechanistic studies on Ca2+ signaling. J Biol Chem. 1994 Apr 15;269(15):11247–11253. [PubMed] [Google Scholar]
- Trilivas I., Brown J. H. Increases in intracellular Ca2+ regulate the binding of [3H]phorbol 12,13-dibutyrate to intact 1321N1 astrocytoma cells. J Biol Chem. 1989 Feb 25;264(6):3102–3107. [PubMed] [Google Scholar]
- Tuominen R. K., Hudson P. M., McMillian M. K., Ye H., Stachowiak M. K., Hong J. S. Long-term activation of protein kinase C by angiotensin II in cultured bovine adrenal medullary cells. J Neurochem. 1991 Apr;56(4):1292–1298. doi: 10.1111/j.1471-4159.1991.tb11424.x. [DOI] [PubMed] [Google Scholar]
- Törnquist K., Ekokoski E., Dugué B. Purinergic agonist ATP is a comitogen in thyroid FRTL-5 cells. J Cell Physiol. 1996 Feb;166(2):241–248. doi: 10.1002/(SICI)1097-4652(199602)166:2<241::AID-JCP1>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
- Wakabayashi I., Groschner K. Divergent effects of extracellular and intracellular alkalosis on Ca2+ entry pathways in vascular endothelial cells. Biochem J. 1997 Apr 15;323(Pt 2):567–573. doi: 10.1042/bj3230567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang X. D., Kiang J. G., Smallridge R. C. Identification of protein kinase C and its multiple isoforms in FRTL-5 thyroid cells. Thyroid. 1995 Apr;5(2):137–140. doi: 10.1089/thy.1995.5.137. [DOI] [PubMed] [Google Scholar]
- Weiss S. J., Philp N. J., Grollman E. F. Effect of thyrotropin on iodide efflux in FRTL-5 cells mediated by Ca2+. Endocrinology. 1984 Apr;114(4):1108–1113. doi: 10.1210/endo-114-4-1108. [DOI] [PubMed] [Google Scholar]
- Wright L. C., Chen S., Roufogalis B. D. Regulation of the activity and phosphorylation of the plasma membrane Ca(2+)-ATPase by protein kinase C in intact human erythrocytes. Arch Biochem Biophys. 1993 Oct;306(1):277–284. doi: 10.1006/abbi.1993.1512. [DOI] [PubMed] [Google Scholar]
- Xu Y., Ware J. A. Selective inhibition of thrombin receptor-mediated Ca2+ entry by protein kinase C beta. J Biol Chem. 1995 Oct 13;270(41):23887–23890. doi: 10.1074/jbc.270.41.23887. [DOI] [PubMed] [Google Scholar]
