Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 1;339(Pt 3):621–628.

Redox modulation of intracellular free calcium concentration in thyroid FRTL-5 cells: evidence for an enhanced extrusion of calcium.

K Törnquist 1, P Vainio 1, A Titievsky 1, B Dugué 1, R Tuominen 1
PMCID: PMC1220198  PMID: 10215601

Abstract

Redox modulation is involved in the regulation of the intracellular free calcium concentration ([Ca2+]i) in several cell types. In thyroid cells, including thyroid FRTL-5 cells, changes in [Ca2+]i regulate important functions. In the present study we investigated the effects of the oxidizing compounds thimerosal and t-butyl hydroperoxide on [Ca2+]i in thyroid FRTL-5 cells. Thimerosal mobilized sequestered calcium, and evoked modest store-dependent calcium entry. Both compounds potently attenuated the increase in [Ca2+]i when store-operated calcium entry was evoked with thapsigargin. The entry of barium was not attenuated. Experiments performed with high extracellular pH, in sodium-free buffer and in the presence of vanadate suggested that thimerosal decreased [Ca2+]i by activating a calcium extrusion mechanism, probably a plasma membrane Ca2+-ATPase. All the observed effects were abrogated by the reducing agent beta-mercaptoethanol. The mechanism of action was apparently mediated via activation of protein kinase C, as thimerosal potently stimulated binding of [3H]phorbol 12, 13-dibutyrate, and was without effect on store-operated calcium entry in cells treated with staurosporine or in cells with down-regulated protein kinase C. Thimerosal did not depolarize the membrane potential, as evaluated using patch-clamp in the whole-cell mode. In immunoprecipitates obtained with an antibody against plasma membrane Ca2+-ATPase, we observed several phosphorylated bands in cells stimulated with thimerosal. In conclusion, we have shown that thimerosal attenuates an increase in [Ca2+]i, probably by activating a plasma membrane Ca2+-ATPase.

Full Text

The Full Text of this article is available as a PDF (176.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson J. J., Zable A. C., Favero T. G., Salama G. Thimerosal interacts with the Ca2+ release channel ryanodine receptor from skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1995 Dec 15;270(50):29644–29647. doi: 10.1074/jbc.270.50.29644. [DOI] [PubMed] [Google Scholar]
  2. Ambesi-Impiombato F. S., Parks L. A., Coon H. G. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3455–3459. doi: 10.1073/pnas.77.6.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J. Capacitative calcium entry. Biochem J. 1995 Nov 15;312(Pt 1):1–11. doi: 10.1042/bj3120001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bird G. S., Burgess G. M., Putney J. W., Jr Sulfhydryl reagents and cAMP-dependent kinase increase the sensitivity of the inositol 1,4,5-trisphosphate receptor in hepatocytes. J Biol Chem. 1993 Aug 25;268(24):17917–17923. [PubMed] [Google Scholar]
  5. Björkman U., Ekholm R. Hydrogen peroxide generation and its regulation in FRTL-5 and porcine thyroid cells. Endocrinology. 1992 Jan;130(1):393–399. doi: 10.1210/endo.130.1.1309340. [DOI] [PubMed] [Google Scholar]
  6. Blackmore P. F., Waynick L. E., Blackman G. E., Graham C. W., Sherry R. S. Alpha- and beta-adrenergic stimulation of parenchymal cell Ca2+ influx. Influence of extracellular pH. J Biol Chem. 1984 Oct 25;259(20):12322–12325. [PubMed] [Google Scholar]
  7. Bootman M. D., Taylor C. W., Berridge M. J. The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1992 Dec 15;267(35):25113–25119. [PubMed] [Google Scholar]
  8. Brynolf K. An enzymatic method for the determination of dCMP in picomol amounts. Anal Biochem. 1976 May 7;72:238–247. doi: 10.1016/0003-2697(76)90526-1. [DOI] [PubMed] [Google Scholar]
  9. Burch R. M., Luini A., Mais D. E., Corda D., Vanderhoek J. Y., Kohn L. D., Axelrod J. Alpha 1-adrenergic stimulation of arachidonic acid release and metabolism in a rat thyroid cell line. Mediation of cell replication by prostaglandin E2. J Biol Chem. 1986 Aug 25;261(24):11236–11241. [PubMed] [Google Scholar]
  10. Carafoli E. Calcium pump of the plasma membrane. Physiol Rev. 1991 Jan;71(1):129–153. doi: 10.1152/physrev.1991.71.1.129. [DOI] [PubMed] [Google Scholar]
  11. Corda D., Marcocci C., Kohn L. D., Axelrod J., Luini A. Association of the changes in cytosolic Ca2+ and iodide efflux induced by thyrotropin and by the stimulation of alpha 1-adrenergic receptors in cultured rat thyroid cells. J Biol Chem. 1985 Aug 5;260(16):9230–9236. [PubMed] [Google Scholar]
  12. Enyedi A., Verma A. K., Filoteo A. G., Penniston J. T. Protein kinase C activates the plasma membrane Ca2+ pump isoform 4b by phosphorylation of an inhibitory region downstream of the calmodulin-binding domain. J Biol Chem. 1996 Dec 13;271(50):32461–32467. doi: 10.1074/jbc.271.50.32461. [DOI] [PubMed] [Google Scholar]
  13. Gopalakrishna R., Anderson W. B. Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6758–6762. doi: 10.1073/pnas.86.17.6758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  15. Guillemette G., Segui J. A. Effects of pH, reducing and alkylating reagents on the binding and Ca2+ release activities of inositol 1,4,5-triphosphate in the bovine adrenal cortex. Mol Endocrinol. 1988 Dec;2(12):1249–1255. doi: 10.1210/mend-2-12-1249. [DOI] [PubMed] [Google Scholar]
  16. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  17. Haverstick D. M., Dicus M., Resnick M. S., Sando J. J., Gray L. S. A role for protein kinase CbetaI in the regulation of Ca2+ entry in Jurkat T cells. J Biol Chem. 1997 Jun 13;272(24):15426–15433. doi: 10.1074/jbc.272.24.15426. [DOI] [PubMed] [Google Scholar]
  18. Hilly M., Piétri-Rouxel F., Coquil J. F., Guy M., Mauger J. P. Thiol reagents increase the affinity of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1993 Aug 5;268(22):16488–16494. [PubMed] [Google Scholar]
  19. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
  20. Hoyal C. R., Thomas A. P., Forman H. J. Hydroperoxide-induced increases in intracellular calcium due to annexin VI translocation and inactivation of plasma membrane Ca2+-ATPase. J Biol Chem. 1996 Nov 15;271(46):29205–29210. doi: 10.1074/jbc.271.46.29205. [DOI] [PubMed] [Google Scholar]
  21. Islam M. S., Kindmark H., Larsson O., Berggren P. O. Thiol oxidation by 2,2'-dithiodipyridine causes a reversible increase in cytoplasmic free Ca2+ concentration in pancreatic beta-cells. Role for inositol 1,4,5-trisphosphate-sensitive Ca2+ stores. Biochem J. 1997 Jan 15;321(Pt 2):347–354. doi: 10.1042/bj3210347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Islam M. S., Rorsman P., Berggren P. O. Ca(2+)-induced Ca2+ release in insulin-secreting cells. FEBS Lett. 1992 Jan 27;296(3):287–291. doi: 10.1016/0014-5793(92)80306-2. [DOI] [PubMed] [Google Scholar]
  23. Jones D. P., Thor H., Smith M. T., Jewell S. A., Orrenius S. Inhibition of ATP-dependent microsomal Ca2+ sequestration during oxidative stress and its prevention by glutathione. J Biol Chem. 1983 May 25;258(10):6390–6393. [PubMed] [Google Scholar]
  24. Karhapä L., Titievsky A., Kaila K., Törnquist K. Redox modulation of calcium entry and release of intracellular calcium by thimerosal in GH4C1 pituitary cells. Cell Calcium. 1996 Dec;20(6):447–457. doi: 10.1016/s0143-4160(96)90086-x. [DOI] [PubMed] [Google Scholar]
  25. Khodorov B., Pinelis V., Vergun O., Storozhevykh T., Fajuk D., Vinskaya N., Arsenjeva E., Khaspekov L., Lyzin A., Isaev N. Dramatic effects of external alkalinity on neuronal calcium recovery following a short-duration glutamate challenge: the role of the plasma membrane Ca2+/H+ pump. FEBS Lett. 1995 Sep 11;371(3):249–252. doi: 10.1016/0014-5793(95)00894-f. [DOI] [PubMed] [Google Scholar]
  26. Kikkawa U., Minakuchi R., Takai Y., Nishizuka Y. Calcium-activated, phospholipid-dependent protein kinase (protein kinase C) from rat brain. Methods Enzymol. 1983;99:288–298. doi: 10.1016/0076-6879(83)99064-x. [DOI] [PubMed] [Google Scholar]
  27. Kimura T., Okajima F., Sho K., Kobayashi I., Kondo Y. Thyrotropin-induced hydrogen peroxide production in FRTL-5 thyroid cells is mediated not by adenosine 3',5'-monophosphate, but by Ca2+ signaling followed by phospholipase-A2 activation and potentiated by an adenosine derivative. Endocrinology. 1995 Jan;136(1):116–123. doi: 10.1210/endo.136.1.7828520. [DOI] [PubMed] [Google Scholar]
  28. Kuo T. H., Wang K. K., Carlock L., Diglio C., Tsang W. Phorbol ester induces both gene expression and phosphorylation of the plasma membrane Ca2+ pump. J Biol Chem. 1991 Feb 5;266(4):2520–2525. [PubMed] [Google Scholar]
  29. Kwan C. Y., Putney J. W., Jr Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. Dissociation by Sr2+ and Ba2+ of agonist-stimulated divalent cation entry from the refilling of the agonist-sensitive intracellular pool. J Biol Chem. 1990 Jan 15;265(2):678–684. [PubMed] [Google Scholar]
  30. Lippes H. A., Spaulding S. W. Peroxide formation and glucose oxidation in calf thyroid slices: regulation by protein kinase-C and cytosolic free calcium. Endocrinology. 1986 Apr;118(4):1306–1311. doi: 10.1210/endo-118-4-1306. [DOI] [PubMed] [Google Scholar]
  31. Marcocci C., Luini A., Santisteban P., Grollman E. F. Norepinephrine and thyrotropin stimulation of iodide efflux in FRTL-5 thyroid cells involves metabolites of arachidonic acid and is associated with the iodination of thyroglobulin. Endocrinology. 1987 Mar;120(3):1127–1133. doi: 10.1210/endo-120-3-1127. [DOI] [PubMed] [Google Scholar]
  32. Merritt J. E., Armstrong W. P., Benham C. D., Hallam T. J., Jacob R., Jaxa-Chamiec A., Leigh B. K., McCarthy S. A., Moores K. E., Rink T. J. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J. 1990 Oct 15;271(2):515–522. doi: 10.1042/bj2710515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Missiaen L., Taylor C. W., Berridge M. J. Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature. 1991 Jul 18;352(6332):241–244. doi: 10.1038/352241a0. [DOI] [PubMed] [Google Scholar]
  34. Montero M., Garcia-Sancho J., Alverez J. Chemotactic peptide down-regulation of calcium mobilization induced by platelet-activating factor and by leukotriene B4 in human neutrophils is uncovered by protein phosphatase inhibitors. Biochem J. 1994 Oct 15;303(Pt 2):559–566. doi: 10.1042/bj3030559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Muallem S., Pandol S. J., Beeker T. G. Modulation of agonist-activated calcium influx by extracellular pH in rat pancreatic acini. Am J Physiol. 1989 Dec;257(6 Pt 1):G917–G924. doi: 10.1152/ajpgi.1989.257.6.G917. [DOI] [PubMed] [Google Scholar]
  36. Niggli V., Sigel E., Carafoli E. The purified Ca2+ pump of human erythrocyte membranes catalyzes an electroneutral Ca2+-H+ exchange in reconstituted liposomal systems. J Biol Chem. 1982 Mar 10;257(5):2350–2356. [PubMed] [Google Scholar]
  37. Nofer J. R., Tepel M., Walter M., Seedorf U., Assmann G., Zidek W. Phosphatidylcholine-specific phospholipase C regulates thapsigargin-induced calcium influx in human lymphocytes. J Biol Chem. 1997 Dec 26;272(52):32861–32868. doi: 10.1074/jbc.272.52.32861. [DOI] [PubMed] [Google Scholar]
  38. Parekh A. B., Penner R. Activation of store-operated calcium influx at resting InsP3 levels by sensitization of the InsP3 receptor in rat basophilic leukaemia cells. J Physiol. 1995 Dec 1;489(Pt 2):377–382. doi: 10.1113/jphysiol.1995.sp021058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Parys J. B., Missiaen L., De Smedt H., Droogmans G., Casteels R. Bell-shaped activation of inositol-1,4,5-trisphosphate-induced Ca2+ release by thimerosal in permeabilized A7r5 smooth-muscle cells. Pflugers Arch. 1993 Sep;424(5-6):516–522. doi: 10.1007/BF00374916. [DOI] [PubMed] [Google Scholar]
  40. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  41. Raspé E., Dumont J. E. Control of the dog thyrocyte plasma membrane iodide permeability by the Ca(2+)-phosphatidylinositol and adenosine 3',5'-monophosphate cascades. Endocrinology. 1994 Sep;135(3):986–995. doi: 10.1210/endo.135.3.8070394. [DOI] [PubMed] [Google Scholar]
  42. Raspé E., Laurent E., Corvilain B., Verjans B., Erneux C., Dumont J. E. Control of the intracellular Ca(2+)-concentration and the inositol phosphate accumulation in dog thyrocyte primary culture: evidence for different kinetics of Ca(2+)-phosphatidylinositol cascade activation and for involvement in the regulation of H2O2 production. J Cell Physiol. 1991 Feb;146(2):242–250. doi: 10.1002/jcp.1041460208. [DOI] [PubMed] [Google Scholar]
  43. Rooney T. A., Renard D. C., Sass E. J., Thomas A. P. Oscillatory cytosolic calcium waves independent of stimulated inositol 1,4,5-trisphosphate formation in hepatocytes. J Biol Chem. 1991 Jul 5;266(19):12272–12282. [PubMed] [Google Scholar]
  44. Saji M., Ikuyama S., Akamizu T., Kohn L. D. Increases in cytosolic Ca++ down regulate thyrotropin receptor gene expression by a mechanism different from the cAMP signal. Biochem Biophys Res Commun. 1991 Apr 15;176(1):94–101. doi: 10.1016/0006-291x(91)90894-d. [DOI] [PubMed] [Google Scholar]
  45. Sayers L. G., Brown G. R., Michell R. H., Michelangeli F. The effects of thimerosal on calcium uptake and inositol 1,4,5-trisphosphate-induced calcium release in cerebellar microsomes. Biochem J. 1993 Feb 1;289(Pt 3):883–887. doi: 10.1042/bj2890883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sho K., Okajima F., Akiyama H., Shoda Y., Kobayashi I., Kondo Y. Requirement of insulin growth factor I plus hydrocortisone for the regeneration of thyrotropin (TSH)-dependent mechanism of I-efflux and Ca2+ mobilization in FRTL-5 cells during TSH depletion. Endocrinology. 1989 Feb;124(2):598–604. doi: 10.1210/endo-124-2-598. [DOI] [PubMed] [Google Scholar]
  47. Smallwood J. I., Gügi B., Rasmussen H. Regulation of erythrocyte Ca2+ pump activity by protein kinase C. J Biol Chem. 1988 Feb 15;263(5):2195–2202. [PubMed] [Google Scholar]
  48. Smallwood J. I., Waisman D. M., Lafreniere D., Rasmussen H. Evidence that the erythrocyte calcium pump catalyzes a Ca2+:nH+ exchange. J Biol Chem. 1983 Sep 25;258(18):11092–11097. [PubMed] [Google Scholar]
  49. Takada K., Amino N., Tada H., Miyai K. Relationship between proliferation and cell cycle-dependent Ca2+ influx induced by a combination of thyrotropin and insulin-like growth factor-I in rat thyroid cells. J Clin Invest. 1990 Nov;86(5):1548–1555. doi: 10.1172/JCI114874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Takasu N., Yamada T., Shimizu Y., Nagasawa Y., Komiya I. Generation of hydrogen peroxide in cultured porcine thyroid cells: synergistic regulation by cytoplasmic free calcium and protein kinase C. J Endocrinol. 1989 Mar;120(3):503–508. doi: 10.1677/joe.0.1200503. [DOI] [PubMed] [Google Scholar]
  51. Tanaka Y., Tashjian A. H., Jr Thimerosal potentiates Ca2+ release mediated by both the inositol 1,4,5-trisphosphate and the ryanodine receptors in sea urchin eggs. Implications for mechanistic studies on Ca2+ signaling. J Biol Chem. 1994 Apr 15;269(15):11247–11253. [PubMed] [Google Scholar]
  52. Trilivas I., Brown J. H. Increases in intracellular Ca2+ regulate the binding of [3H]phorbol 12,13-dibutyrate to intact 1321N1 astrocytoma cells. J Biol Chem. 1989 Feb 25;264(6):3102–3107. [PubMed] [Google Scholar]
  53. Tuominen R. K., Hudson P. M., McMillian M. K., Ye H., Stachowiak M. K., Hong J. S. Long-term activation of protein kinase C by angiotensin II in cultured bovine adrenal medullary cells. J Neurochem. 1991 Apr;56(4):1292–1298. doi: 10.1111/j.1471-4159.1991.tb11424.x. [DOI] [PubMed] [Google Scholar]
  54. Törnquist K., Ekokoski E., Dugué B. Purinergic agonist ATP is a comitogen in thyroid FRTL-5 cells. J Cell Physiol. 1996 Feb;166(2):241–248. doi: 10.1002/(SICI)1097-4652(199602)166:2<241::AID-JCP1>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  55. Wakabayashi I., Groschner K. Divergent effects of extracellular and intracellular alkalosis on Ca2+ entry pathways in vascular endothelial cells. Biochem J. 1997 Apr 15;323(Pt 2):567–573. doi: 10.1042/bj3230567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wang X. D., Kiang J. G., Smallridge R. C. Identification of protein kinase C and its multiple isoforms in FRTL-5 thyroid cells. Thyroid. 1995 Apr;5(2):137–140. doi: 10.1089/thy.1995.5.137. [DOI] [PubMed] [Google Scholar]
  57. Weiss S. J., Philp N. J., Grollman E. F. Effect of thyrotropin on iodide efflux in FRTL-5 cells mediated by Ca2+. Endocrinology. 1984 Apr;114(4):1108–1113. doi: 10.1210/endo-114-4-1108. [DOI] [PubMed] [Google Scholar]
  58. Wright L. C., Chen S., Roufogalis B. D. Regulation of the activity and phosphorylation of the plasma membrane Ca(2+)-ATPase by protein kinase C in intact human erythrocytes. Arch Biochem Biophys. 1993 Oct;306(1):277–284. doi: 10.1006/abbi.1993.1512. [DOI] [PubMed] [Google Scholar]
  59. Xu Y., Ware J. A. Selective inhibition of thrombin receptor-mediated Ca2+ entry by protein kinase C beta. J Biol Chem. 1995 Oct 13;270(41):23887–23890. doi: 10.1074/jbc.270.41.23887. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES