Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 1;339(Pt 3):629–638.

Identification of protein components of the microsomal glucose 6-phosphate transporter by photoaffinity labelling.

W Kramer 1, H J Burger 1, W J Arion 1, D Corsiero 1, F Girbig 1, C Weyland 1, H Hemmerle 1, S Petry 1, P Habermann 1, A Herling 1
PMCID: PMC1220199  PMID: 10215602

Abstract

The glucose-6-phosphatase system catalyses the terminal step of hepatic glucose production from both gluconeogenesis and glycogenolysis and is thus a key regulatory factor of blood glucose homoeostasis. To identify the glucose 6-phosphate transporter T1, we have performed photoaffinity labelling of human and rat liver microsomes by using the specific photoreactive glucose-6-phosphate translocase inhibitors S 0957 and S 1743. Membrane proteins of molecular mass 70, 55, 33 and 31 kDa were labelled in human microsomes by [3H]S 0957, whereas in rat liver microsomes bands at 95, 70, 57, 54, 50, 41, 33 and 31 kDa were detectable. The photoprobe [3H]S 1743 led to the predominant labelling of a 57 kDa and a 50 kDa protein in the rat. Stripping of microsomes with 0.3% CHAPS retains the specific binding of T1 inhibitors; photoaffinity labelling of such CHAPS-treated microsomes resulted in the labelling of membrane proteins of molecular mass 55, 33 and 31 kDa in human liver and 50, 33 and 31 kDa in rat liver. Photoaffinity labelling of human liver tissue samples from a healthy individual and from liver samples of patients with a diagnosed glycogen-storage disease type 1b (GSD type 1b; von Gierke's disease) revealed the absence of the 55 kDa protein from one of the patients with GSD type 1. These findings support the identity of the glucose 6-phosphate transporter T1, with endoplasmic reticulum protein of molecular mass 50 kDa in rat liver and 55 kDa in human liver.

Full Text

The Full Text of this article is available as a PDF (231.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arion W. J., Canfield W. K., Callaway E. S., Burger H. J., Hemmerle H., Schubert G., Herling A. W., Oekonomopulos R. Direct evidence for the involvement of two glucose 6-phosphate-binding sites in the glucose-6-phosphatase activity of intact liver microsomes. Characterization of T1, the microsomal glucose 6-phosphate transport protein by a direct binding assay. J Biol Chem. 1998 Mar 13;273(11):6223–6227. doi: 10.1074/jbc.273.11.6223. [DOI] [PubMed] [Google Scholar]
  2. Arion W. J., Canfield W. K. Glucose-6-phosphatase and type 1 glycogen storage disease: some critical considerations. Eur J Pediatr. 1993;152 (Suppl 1):S7–13. doi: 10.1007/BF02072080. [DOI] [PubMed] [Google Scholar]
  3. Arion W. J., Canfield W. K., Ramos F. C., Schindler P. W., Burger H. J., Hemmerle H., Schubert G., Below P., Herling A. W. Chlorogenic acid and hydroxynitrobenzaldehyde: new inhibitors of hepatic glucose 6-phosphatase. Arch Biochem Biophys. 1997 Mar 15;339(2):315–322. doi: 10.1006/abbi.1996.9874. [DOI] [PubMed] [Google Scholar]
  4. Arion W. J., Canfield W. K., Ramos F. C., Su M. L., Burger H. J., Hemmerle H., Schubert G., Below P., Herling A. W. Chlorogenic acid analogue S 3483: a potent competitive inhibitor of the hepatic and renal glucose-6-phosphatase systems. Arch Biochem Biophys. 1998 Mar 15;351(2):279–285. doi: 10.1006/abbi.1997.0563. [DOI] [PubMed] [Google Scholar]
  5. Arion W. J., Lange A. J., Walls H. E., Ballas L. M. Evidence for the participation of independent translocation for phosphate and glucose 6-phosphate in the microsomal glucose-6-phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate. J Biol Chem. 1980 Nov 10;255(21):10396–10406. [PubMed] [Google Scholar]
  6. Arion W. J. Measurement of intactness of rat liver endoplasmic reticulum. Methods Enzymol. 1989;174:58–67. doi: 10.1016/0076-6879(89)74010-6. [DOI] [PubMed] [Google Scholar]
  7. Berteloot A., Vidal H., van de Werve G. Rapid kinetics of liver microsomal glucose-6-phosphatase. Evidence for tight-coupling between glucose-6-phosphate transport and phosphohydrolase activity. J Biol Chem. 1991 Mar 25;266(9):5497–5507. [PubMed] [Google Scholar]
  8. Best J. D., Judzewitsch R. G., Pfeifer M. A., Beard J. C., Halter J. B., Porte D., Jr The effect of chronic sulfonylurea therapy on hepatic glucose production in non-insulin-dependent diabetes. Diabetes. 1982 Apr;31(4 Pt 1):333–338. doi: 10.2337/diab.31.4.333. [DOI] [PubMed] [Google Scholar]
  9. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  10. CORI G. T., CORI C. F. Glucose-6-phosphatase of the liver in glycogen storage disease. J Biol Chem. 1952 Dec;199(2):661–667. [PubMed] [Google Scholar]
  11. DeFronzo R. A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988 Jun;37(6):667–687. doi: 10.2337/diab.37.6.667. [DOI] [PubMed] [Google Scholar]
  12. Foster J. D., Pederson B. A., Nordlie R. C. Glucose-6-phosphatase structure, regulation, and function: an update. Proc Soc Exp Biol Med. 1997 Sep;215(4):314–332. doi: 10.3181/00379727-215-44142. [DOI] [PubMed] [Google Scholar]
  13. Fulceri R., Bellomo G., Gamberucci A., Scott H. M., Burchell A., Benedetti A. Permeability of rat liver microsomal membrane to glucose 6-phosphate. Biochem J. 1992 Sep 15;286(Pt 3):813–817. doi: 10.1042/bj2860813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gerin I., Veiga-da-Cunha M., Achouri Y., Collet J. F., Van Schaftingen E. Sequence of a putative glucose 6-phosphate translocase, mutated in glycogen storage disease type Ib. FEBS Lett. 1997 Dec 15;419(2-3):235–238. doi: 10.1016/s0014-5793(97)01463-4. [DOI] [PubMed] [Google Scholar]
  15. HERS H. G., BERTHET J., BERTHET L., DE DUVE C. Le système hexose-phosphatasique. III. Localisation intra-cellulaire des ferments par centrifugation fractionnée. Bull Soc Chim Biol (Paris) 1951;33(1-2):21–41. [PubMed] [Google Scholar]
  16. Haber B. A., Chin S., Chuang E., Buikhuisen W., Naji A., Taub R. High levels of glucose-6-phosphatase gene and protein expression reflect an adaptive response in proliferating liver and diabetes. J Clin Invest. 1995 Feb;95(2):832–841. doi: 10.1172/JCI117733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hemmerle H., Burger H. J., Below P., Schubert G., Rippel R., Schindler P. W., Paulus E., Herling A. W. Chlorogenic acid and synthetic chlorogenic acid derivatives: novel inhibitors of hepatic glucose-6-phosphate translocase. J Med Chem. 1997 Jan 17;40(2):137–145. doi: 10.1021/jm9607360. [DOI] [PubMed] [Google Scholar]
  18. Herling A. W., Burger H. J., Schwab D., Hemmerle H., Below P., Schubert G. Pharmacodynamic profile of a novel inhibitor of the hepatic glucose-6-phosphatase system. Am J Physiol. 1998 Jun;274(6 Pt 1):G1087–G1093. doi: 10.1152/ajpgi.1998.274.6.G1087. [DOI] [PubMed] [Google Scholar]
  19. Kramer W., Girbig F., Gutjahr U., Kowalewski S., Jouvenal K., Müller G., Tripier D., Wess G. Intestinal bile acid absorption. Na(+)-dependent bile acid transport activity in rabbit small intestine correlates with the coexpression of an integral 93-kDa and a peripheral 14-kDa bile acid-binding membrane protein along the duodenum-ileum axis. J Biol Chem. 1993 Aug 25;268(24):18035–18046. [PubMed] [Google Scholar]
  20. Kramer W., Girbig F., Gutjahr U., Leipe I. Application of high-performance liquid chromatography to the purification of the putative intestinal peptide transporter. J Chromatogr. 1990 Nov 23;521(2):199–210. doi: 10.1016/0021-9673(90)85044-v. [DOI] [PubMed] [Google Scholar]
  21. Kramer W., Girbig F., Leipe I., Petzoldt E. Direct photoaffinity labelling of binding proteins for beta-lactam antibiotics in rabbit intestinal brush border membranes with [3H]benzylpenicillin. Biochem Pharmacol. 1988 Jun 15;37(12):2427–2435. doi: 10.1016/0006-2952(88)90370-x. [DOI] [PubMed] [Google Scholar]
  22. Kramer W., Wess G., Bewersdorf U., Corsiero D., Girbig F., Weyland C., Stengelin S., Enhsen A., Bock K., Kleine H. Topological photoaffinity labeling of the rabbit ileal Na+/bile-salt-cotransport system. Eur J Biochem. 1997 Oct 15;249(2):456–464. doi: 10.1111/j.1432-1033.1997.00456.x. [DOI] [PubMed] [Google Scholar]
  23. Lange A. J., Arion W. J., Beaudet A. L. Type Ib glycogen storage disease is caused by a defect in the glucose-6-phosphate translocase of the microsomal glucose-6-phosphatase system. J Biol Chem. 1980 Sep 25;255(18):8381–8384. [PubMed] [Google Scholar]
  24. Lei K. J., Shelly L. L., Lin B., Sidbury J. B., Chen Y. T., Nordlie R. C., Chou J. Y. Mutations in the glucose-6-phosphatase gene are associated with glycogen storage disease types 1a and 1aSP but not 1b and 1c. J Clin Invest. 1995 Jan;95(1):234–240. doi: 10.1172/JCI117645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lei K. J., Shelly L. L., Pan C. J., Sidbury J. B., Chou J. Y. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science. 1993 Oct 22;262(5133):580–583. doi: 10.1126/science.8211187. [DOI] [PubMed] [Google Scholar]
  26. Narisawa K., Igarashi Y., Otomo H., Tada K. A new variant of glycogen storage disease type I probably due to a defect in the glucose-6-phosphate transport system. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1360–1364. doi: 10.1016/0006-291x(78)91371-2. [DOI] [PubMed] [Google Scholar]
  27. Nordlie R. C. Metabolic regulation by multifunctional glucose-6-phosphatase. Curr Top Cell Regul. 1974;8(0):33–117. doi: 10.1016/b978-0-12-152808-9.50009-2. [DOI] [PubMed] [Google Scholar]
  28. Parker J. C., VanVolkenburg M. A., Levy C. B., Martin W. H., Burk S. H., Kwon Y., Giragossian C., Gant T. G., Carpino P. A., McPherson R. K. Plasma glucose levels are reduced in rats and mice treated with an inhibitor of glucose-6-phosphate translocase. Diabetes. 1998 Oct;47(10):1630–1636. doi: 10.2337/diabetes.47.10.1630. [DOI] [PubMed] [Google Scholar]
  29. Pomerantz A. H., Rudolph S. A., Haley B. E., Greengard P. Photoaffinity labeling of a protein kinase from bovine brain with 8-azidoadenosine 3',5'-monophosphate. Biochemistry. 1975 Aug 26;14(17):3858–3862. doi: 10.1021/bi00688a019. [DOI] [PubMed] [Google Scholar]
  30. Schulze H. U., Nolte B., Kannler R. Evidence for changes in the conformational status of rat liver microsomal glucose-6-phosphate:phosphohydrolase during detergent-dependent membrane modification. Effect of p-mercuribenzoate and organomercurial agarose gel on glucose-6-phosphatase of native and detergent-modified microsomes. J Biol Chem. 1986 Dec 15;261(35):16571–16578. [PubMed] [Google Scholar]
  31. Shelly L. L., Lei K. J., Pan C. J., Sakata S. F., Ruppert S., Schutz G., Chou J. Y. Isolation of the gene for murine glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1A. J Biol Chem. 1993 Oct 15;268(29):21482–21485. [PubMed] [Google Scholar]
  32. Veiga-da-Cunha M., Gerin I., Chen Y. T., de Barsy T., de Lonlay P., Dionisi-Vici C., Fenske C. D., Lee P. J., Leonard J. V., Maire I. A gene on chromosome 11q23 coding for a putative glucose- 6-phosphate translocase is mutated in glycogen-storage disease types Ib and Ic. Am J Hum Genet. 1998 Oct;63(4):976–983. doi: 10.1086/302068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
  34. Zoccoli M. A., Karnovsky M. L. Effect of two inhibitors of anion transport on the hydrolysis of glucose 6-phosphate by rat liver microsomes. Covalent modification of the glucose 6-P transport component. J Biol Chem. 1980 Feb 10;255(3):1113–1119. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES