Abstract
PACE4 is a member of the eukaryotic subtilisin-like endoprotease family. The expression of human PACE4 in RPE.40 cells (furin-null mutants derived from Chinese hamster ovary K1 cells) resulted in the rescue of a number of wild-type characteristics, including sensitivity to Sindbis virus and the ability to process the low-density-lipoprotein receptor-related protein. Expression of PACE4 in these cells failed to restore wild-type sensitivity to Pseudomonas exotoxin A. Co-expression of human PACE4 in these cells with either a secreted form of the human insulin pro-receptor or the precursor form of von Willebrand factor resulted in both proproteins being processed; RPE.40 cells were unable to process either precursor protein in the absence of co-expressed PACE4. Northern analysis demonstrated that untransfected RPE.40 cells express mRNA species for four PACE4 isoforms, suggesting that any endogenous PACE4 proteins produced by these cells are either non-functional or sequestered in a compartment outside of the secretory pathway. In experiments in vitro, PACE4 processed diphtheria toxin and anthrax toxin protective antigen, but not Pseudomonas exotoxin A. The activity of PACE4 in vitro was Ca2+-dependent and, unlike furin, was sensitive to temperature changes between 22 and 37 degrees C. RPE.40 cells stably expressing human PACE4 secreted an endoprotease with the same Ca2+ dependence and temperature sensitivity as that observed in membrane fractions of these cells assayed in vitro. These results, in conjunction with other published work, demonstrate that PACE4 is an endoprotease with more stringent substrate specificity and more limited operating parameters than furin.
Full Text
The Full Text of this article is available as a PDF (219.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akamatsu T., Daikoku S., Nagamune H., Yoshida S., Mori K., Tsuji A., Matsuda Y. Developmental expression of a novel Kexin family protease, PACE4E, in the rat olfactory system. Histochem Cell Biol. 1997 Aug;108(2):95–103. doi: 10.1007/s004180050150. [DOI] [PubMed] [Google Scholar]
- Barr P. J. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell. 1991 Jul 12;66(1):1–3. doi: 10.1016/0092-8674(91)90129-m. [DOI] [PubMed] [Google Scholar]
- Beaubien G., Schäfer M. K., Weihe E., Dong W., Chrétien M., Seidah N. G., Day R. The distinct gene expression of the pro-hormone convertases in the rat heart suggests potential substrates. Cell Tissue Res. 1995 Mar;279(3):539–549. doi: 10.1007/BF00318166. [DOI] [PubMed] [Google Scholar]
- Brakch N., Galanopoulou A. S., Patel Y. C., Boileau G., Seidah N. G. Comparative proteolytic processing of rat prosomatostatin by the convertases PC1, PC2, furin, PACE4 and PC5 in constitutive and regulated secretory pathways. FEBS Lett. 1995 Apr 3;362(2):143–146. doi: 10.1016/0014-5793(95)00229-3. [DOI] [PubMed] [Google Scholar]
- Braxton S., Wells J. A. Incorporation of a stabilizing Ca(2+)-binding loop into subtilisin BPN'. Biochemistry. 1992 Sep 1;31(34):7796–7801. doi: 10.1021/bi00149a008. [DOI] [PubMed] [Google Scholar]
- Creemers J. W., Groot Kormelink P. J., Roebroek A. J., Nakayama K., Van de Ven W. J. Proprotein processing activity and cleavage site selectivity of the Kex2-like endoprotease PACE4. FEBS Lett. 1993 Dec 20;336(1):65–69. doi: 10.1016/0014-5793(93)81610-c. [DOI] [PubMed] [Google Scholar]
- Creemers J. W., Siezen R. J., Roebroek A. J., Ayoubi T. A., Huylebroeck D., Van de Ven W. J. Modulation of furin-mediated proprotein processing activity by site-directed mutagenesis. J Biol Chem. 1993 Oct 15;268(29):21826–21834. [PubMed] [Google Scholar]
- Decroly E., Wouters S., Di Bello C., Lazure C., Ruysschaert J. M., Seidah N. G. Identification of the paired basic convertases implicated in HIV gp160 processing based on in vitro assays and expression in CD4(+) cell lines. J Biol Chem. 1996 Nov 29;271(48):30442–30450. doi: 10.1074/jbc.271.48.30442. [DOI] [PubMed] [Google Scholar]
- Dhanvantari S., Seidah N. G., Brubaker P. L. Role of prohormone convertases in the tissue-specific processing of proglucagon. Mol Endocrinol. 1996 Apr;10(4):342–355. doi: 10.1210/mend.10.4.8721980. [DOI] [PubMed] [Google Scholar]
- Dong W., Marcinkiewicz M., Vieau D., Chrétien M., Seidah N. G., Day R. Distinct mRNA expression of the highly homologous convertases PC5 and PACE4 in the rat brain and pituitary. J Neurosci. 1995 Mar;15(3 Pt 1):1778–1796. doi: 10.1523/JNEUROSCI.15-03-01778.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duguay S. J., Milewski W. M., Young B. D., Nakayama K., Steiner D. F. Processing of wild-type and mutant proinsulin-like growth factor-IA by subtilisin-related proprotein convertases. J Biol Chem. 1997 Mar 7;272(10):6663–6670. doi: 10.1074/jbc.272.10.6663. [DOI] [PubMed] [Google Scholar]
- Gordon V. M., Rehemtulla A., Leppla S. H. A role for PACE4 in the proteolytic activation of anthrax toxin protective antigen. Infect Immun. 1997 Aug;65(8):3370–3375. doi: 10.1128/iai.65.8.3370-3375.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halban P. A., Irminger J. C. Sorting and processing of secretory proteins. Biochem J. 1994 Apr 1;299(Pt 1):1–18. doi: 10.1042/bj2990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatsuzawa K., Hosaka M., Nakagawa T., Nagase M., Shoda A., Murakami K., Nakayama K. Structure and expression of mouse furin, a yeast Kex2-related protease. Lack of processing of coexpressed prorenin in GH4C1 cells. J Biol Chem. 1990 Dec 25;265(36):22075–22078. [PubMed] [Google Scholar]
- Hatsuzawa K., Murakami K., Nakayama K. Molecular and enzymatic properties of furin, a Kex2-like endoprotease involved in precursor cleavage at Arg-X-Lys/Arg-Arg sites. J Biochem. 1992 Mar;111(3):296–301. doi: 10.1093/oxfordjournals.jbchem.a123753. [DOI] [PubMed] [Google Scholar]
- Horimoto T., Nakayama K., Smeekens S. P., Kawaoka Y. Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol. 1994 Sep;68(9):6074–6078. doi: 10.1128/jvi.68.9.6074-6078.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inocencio N. M., Moehring J. M., Moehring T. J. A mutant CHO-K1 strain with resistance to Pseudomonas exotoxin A is unable to process the precursor fusion glycoprotein of Newcastle disease virus. J Virol. 1993 Jan;67(1):593–595. doi: 10.1128/jvi.67.1.593-595.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inocencio N. M., Moehring J. M., Moehring T. J. Furin activates Pseudomonas exotoxin A by specific cleavage in vivo and in vitro. J Biol Chem. 1994 Dec 16;269(50):31831–31835. [PubMed] [Google Scholar]
- Inocencio N. M., Sucic J. F., Moehring J. M., Spence M. J., Moehring T. J. Endoprotease activities other than furin and PACE4 with a role in processing of HIV-I gp160 glycoproteins in CHO-K1 cells. J Biol Chem. 1997 Jan 10;272(2):1344–1348. doi: 10.1074/jbc.272.2.1344. [DOI] [PubMed] [Google Scholar]
- Johnson R. C., Darlington D. N., Hand T. A., Bloomquist B. T., Mains R. E. PACE4: a subtilisin-like endoprotease prevalent in the anterior pituitary and regulated by thyroid status. Endocrinology. 1994 Sep;135(3):1178–1185. doi: 10.1210/endo.135.3.8070361. [DOI] [PubMed] [Google Scholar]
- Kiefer M. C., Tucker J. E., Joh R., Landsberg K. E., Saltman D., Barr P. J. Identification of a second human subtilisin-like protease gene in the fes/fps region of chromosome 15. DNA Cell Biol. 1991 Dec;10(10):757–769. doi: 10.1089/dna.1991.10.757. [DOI] [PubMed] [Google Scholar]
- Kowal R. C., Herz J., Weisgraber K. H., Mahley R. W., Brown M. S., Goldstein J. L. Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J Biol Chem. 1990 Jun 25;265(18):10771–10779. [PubMed] [Google Scholar]
- Mains R. E., Berard C. A., Denault J. B., Zhou A., Johnson R. C., Leduc R. PACE4: a subtilisin-like endoprotease with unique properties. Biochem J. 1997 Feb 1;321(Pt 3):587–593. doi: 10.1042/bj3210587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moehring J. M., Inocencio N. M., Robertson B. J., Moehring T. J. Expression of mouse furin in a Chinese hamster cell resistant to Pseudomonas exotoxin A and viruses complements the genetic lesion. J Biol Chem. 1993 Feb 5;268(4):2590–2594. [PubMed] [Google Scholar]
- Moehring J. M., Moehring T. J. Strains of CHO-K1 cells resistant to Pseudomonas exotoxin A and cross-resistant to diphtheria toxin and viruses. Infect Immun. 1983 Sep;41(3):998–1009. doi: 10.1128/iai.41.3.998-1009.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molloy S. S., Bresnahan P. A., Leppla S. H., Klimpel K. R., Thomas G. Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem. 1992 Aug 15;267(23):16396–16402. [PubMed] [Google Scholar]
- Molloy S. S., Thomas L., VanSlyke J. K., Stenberg P. E., Thomas G. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 1994 Jan 1;13(1):18–33. doi: 10.1002/j.1460-2075.1994.tb06231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mori K., Kii S., Tsuji A., Nagahama M., Imamaki A., Hayashi K., Akamatsu T., Nagamune H., Matsuda Y. A novel human PACE4 isoform, PACE4E is an active processing protease containing a hydrophobic cluster at the carboxy terminus. J Biochem. 1997 May;121(5):941–948. doi: 10.1093/oxfordjournals.jbchem.a021677. [DOI] [PubMed] [Google Scholar]
- Rehemtulla A., Barr P. J., Rhodes C. J., Kaufman R. J. PACE4 is a member of the mammalian propeptidase family that has overlapping but not identical substrate specificity to PACE. Biochemistry. 1993 Nov 2;32(43):11586–11590. doi: 10.1021/bi00094a015. [DOI] [PubMed] [Google Scholar]
- Robertson B. J., Moehring J. M., Moehring T. J. Defective processing of the insulin receptor in an endoprotease-deficient Chinese hamster cell strain is corrected by expression of mouse furin. J Biol Chem. 1993 Nov 15;268(32):24274–24277. [PubMed] [Google Scholar]
- Salvatori R., Bockman R. S., Guidon P. T., Jr A simple modification of the Peppel/Baglioni method for RNA isolation from cell culture. Biotechniques. 1992 Oct;13(4):510–512. [PubMed] [Google Scholar]
- Seidah N. G., Benjannet S., Pareek S., Chrétien M., Murphy R. A. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett. 1996 Feb 5;379(3):247–250. doi: 10.1016/0014-5793(95)01520-5. [DOI] [PubMed] [Google Scholar]
- Seidah N. G., Benjannet S., Pareek S., Savaria D., Hamelin J., Goulet B., Laliberte J., Lazure C., Chrétien M., Murphy R. A. Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem J. 1996 Mar 15;314(Pt 3):951–960. doi: 10.1042/bj3140951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seidah N. G., Chrétien M., Day R. The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie. 1994;76(3-4):197–209. doi: 10.1016/0300-9084(94)90147-3. [DOI] [PubMed] [Google Scholar]
- Spence M. J., Sucic J. F., Foley B. T., Moehring T. J. Analysis of mutations in alleles of the fur gene from an endoprotease-deficient Chinese hamster ovary cell strain. Somat Cell Mol Genet. 1995 Jan;21(1):1–18. doi: 10.1007/BF02255818. [DOI] [PubMed] [Google Scholar]
- Steiner D. F., Smeekens S. P., Ohagi S., Chan S. J. The new enzymology of precursor processing endoproteases. J Biol Chem. 1992 Nov 25;267(33):23435–23438. [PubMed] [Google Scholar]
- Strickland D. K., Ashcom J. D., Williams S., Burgess W. H., Migliorini M., Argraves W. S. Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J Biol Chem. 1990 Oct 15;265(29):17401–17404. [PubMed] [Google Scholar]
- Sucic J. F., Spence M. J., Moehring T. J. Structural and functional analysis of the protein products derived from mutant fur alleles in an endoprotease-deficient Chinese hamster ovary cell strain. Somat Cell Mol Genet. 1998 Mar;24(2):75–90. doi: 10.1023/b:scam.0000007111.46513.70. [DOI] [PubMed] [Google Scholar]
- Tsuji A., Higashine K., Hine C., Mori K., Tamai Y., Nagamune H., Matsuda Y. Identification of novel cDNAs encoding human kexin-like protease, PACE4 isoforms. Biochem Biophys Res Commun. 1994 Apr 29;200(2):943–950. doi: 10.1006/bbrc.1994.1541. [DOI] [PubMed] [Google Scholar]
- Tsuji A., Hine C., Tamai Y., Yonemoto K., Mori K., Yoshida S., Bando M., Sakai E., Mori K., Akamatsu T. Genomic organization and alternative splicing of human PACE4 (SPC4), kexin-like processing endoprotease. J Biochem. 1997 Aug;122(2):438–452. doi: 10.1093/oxfordjournals.jbchem.a021772. [DOI] [PubMed] [Google Scholar]
- Tsuji A., Mori K., Hine C., Tamai Y., Nagamune H., Matsuda Y. The tissue distribution of mRNAs for the PACE4 isoforms, kexin-like processing protease: PACE4C and PACE4D mRNAs are major transcripts among PACE4 isoforms. Biochem Biophys Res Commun. 1994 Aug 15;202(3):1215–1221. doi: 10.1006/bbrc.1994.2060. [DOI] [PubMed] [Google Scholar]
- Virca G. D., Northemann W., Shiels B. R., Widera G., Broome S. Simplified northern blot hybridization using 5% sodium dodecyl sulfate. Biotechniques. 1990 Apr;8(4):370–371. [PubMed] [Google Scholar]
- Vollenweider F., Benjannet S., Decroly E., Savaria D., Lazure C., Thomas G., Chrétien M., Seidah N. G. Comparative cellular processing of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp160 by the mammalian subtilisin/kexin-like convertases. Biochem J. 1996 Mar 1;314(Pt 2):521–532. doi: 10.1042/bj3140521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wasley L. C., Rehemtulla A., Bristol J. A., Kaufman R. J. PACE/furin can process the vitamin K-dependent pro-factor IX precursor within the secretory pathway. J Biol Chem. 1993 Apr 25;268(12):8458–8465. [PubMed] [Google Scholar]
- Watson D. G., Moehring J. M., Moehring T. J. A mutant CHO-K1 strain with resistance to Pseudomonas exotoxin A and alphaviruses fails to cleave Sindbis virus glycoprotein PE2. J Virol. 1991 May;65(5):2332–2339. doi: 10.1128/jvi.65.5.2332-2339.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willnow T. E., Moehring J. M., Inocencio N. M., Moehring T. J., Herz J. The low-density-lipoprotein receptor-related protein (LRP) is processed by furin in vivo and in vitro. Biochem J. 1996 Jan 1;313(Pt 1):71–76. doi: 10.1042/bj3130071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wüthrich M., Creemers J. W., van de Ven W. J., Sterchi E. E. Human lactase-phlorizin hydrolase is not processed by furin, PC1/PC3, PC2, PACE4 and PC5/PC6A of the family of subtilisin-like proprotein processing proteases. Biochim Biophys Acta. 1996 May 28;1311(3):199–203. doi: 10.1016/0167-4889(96)00007-9. [DOI] [PubMed] [Google Scholar]
- Zarkik S., Decroly E., Wattiez R., Seidah N. G., Burny A., Ruysschaert J. M. Comparative processing of bovine leukemia virus envelope glycoprotein gp72 by subtilisin/kexin-like mammalian convertases. FEBS Lett. 1997 Apr 7;406(1-2):205–210. doi: 10.1016/s0014-5793(97)00275-5. [DOI] [PubMed] [Google Scholar]
- Zheng M., Seidah N. G., Pintar J. E. The developmental expression in the rat CNS and peripheral tissues of proteases PC5 and PACE4 mRNAs: comparison with other proprotein processing enzymes. Dev Biol. 1997 Jan 15;181(2):268–283. doi: 10.1006/dbio.1996.8402. [DOI] [PubMed] [Google Scholar]
- Zhong M., Benjannet S., Lazure C., Munzer S., Seidah N. G. Functional analysis of human PACE4-A and PACE4-C isoforms: identification of a new PACE4-CS isoform. FEBS Lett. 1996 Oct 28;396(1):31–36. doi: 10.1016/0014-5793(96)01059-9. [DOI] [PubMed] [Google Scholar]