Abstract
Overproduction of the insecticide-degrading esterases, E4 and FE4, in peach-potato aphids, Myzus persicae (Sulzer), depends on both gene amplification and transcriptional control, the latter being associated with changes in DNA methylation. The structure and function of the aphid esterase genes have been studied but the determination of their copy number has proved difficult, a common problem with gene amplification. We have now used a combination of pulsed-field gel electrophoresis and quantitative competitive PCR to determine relative esterase gene copy numbers in aphid clones with different levels of insecticide resistance (R1, R2 and R3). There are approx. 4-fold increases between susceptible, R1, R2 and R3 aphids, reaching a maximum of approx. 80 times more genes in R3; this gives proportionate increases in esterase protein relative to susceptible aphids. Thus there is no overexpression of the amplified genes, in contrast with what was thought previously. For E4 genes, the loss of 5-methylcytosine is correlated with a loss of expression, greatly decreasing the amount of enzyme relative to the copy number.
Full Text
The Full Text of this article is available as a PDF (153.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Callaghan A., Guillemaud T., Makate N., Raymond M. Polymorphisms and fluctuations in copy number of amplified esterase genes in Culex pipiens mosquitoes. Insect Mol Biol. 1998 Aug;7(3):295–300. doi: 10.1111/j.1365-2583.1998.00077.x. [DOI] [PubMed] [Google Scholar]
- Field L. M., Crick S. E., Devonshire A. L. Polymerase chain reaction-based identification of insecticide resistance genes and DNA methylation in the aphid Myzus persicae (Sulzer). Insect Mol Biol. 1996 Aug;5(3):197–202. doi: 10.1111/j.1365-2583.1996.tb00054.x. [DOI] [PubMed] [Google Scholar]
- Field L. M., Devonshire A. L. Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochem J. 1998 Feb 15;330(Pt 1):169–173. doi: 10.1042/bj3300169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Field L. M., Devonshire A. L., Forde B. G. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem J. 1988 Apr 1;251(1):309–312. doi: 10.1042/bj2510309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Field L. M., Devonshire A. L. Structure and organization of amplicons containing the E4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer). Biochem J. 1997 Mar 15;322(Pt 3):867–871. doi: 10.1042/bj3220867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Field L. M., Devonshire A. L., Tyler-Smith C. Analysis of amplicons containing the esterase genes responsible for insecticide resistance in the peach-potato aphid Myzus persicae (Sulzer). Biochem J. 1996 Jan 15;313(Pt 2):543–547. doi: 10.1042/bj3130543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Field L. M., Williamson M. S., Moores G. D., Devonshire A. L. Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Biochem J. 1993 Sep 1;294(Pt 2):569–574. doi: 10.1042/bj2940569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heyse D., Catalan J., Nancé E., Britton-Davidian J., Pasteur N. Unconventional organization of amplified esterase B gene in insecticide-resistant mosquitoes of the Culex pipiens complex. J Am Mosq Control Assoc. 1996 Jun;12(2 Pt 1):199–205. [PubMed] [Google Scholar]
- Hick C. A., Field L. M., Devonshire A. L. Changes in the methylation of amplified esterase DNA during loss and reselection of insecticide resistance in peach-potato aphids, Myzus persicae. Insect Biochem Mol Biol. 1996 Jan;26(1):41–47. doi: 10.1016/0965-1748(95)00059-3. [DOI] [PubMed] [Google Scholar]
- Karpen G. H. Position-effect variegation and the new biology of heterochromatin. Curr Opin Genet Dev. 1994 Apr;4(2):281–291. doi: 10.1016/s0959-437x(05)80055-3. [DOI] [PubMed] [Google Scholar]
- Monteiro L., Hua J., Birac C., Lamouliatte H., Mégraud F. Quantitative polymerase chain reaction for the detection of Helicobacter pylori in gastric biopsy specimens. Eur J Clin Microbiol Infect Dis. 1997 Feb;16(2):143–149. doi: 10.1007/BF01709473. [DOI] [PubMed] [Google Scholar]
- Piatak M., Jr, Saag M. S., Yang L. C., Clark S. J., Kappes J. C., Luk K. C., Hahn B. H., Shaw G. M., Lifson J. D. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science. 1993 Mar 19;259(5102):1749–1754. doi: 10.1126/science.8096089. [DOI] [PubMed] [Google Scholar]
- Spence J. M., Blackman R. L., Testa J. M., Ready P. D. A 169-base pair tandem repeat DNA marker for subtelomeric heterochromatin and chromosomal rearrangements in aphids of the Myzus persicae group. Chromosome Res. 1998 Apr;6(3):167–175. doi: 10.1023/a:1009251415941. [DOI] [PubMed] [Google Scholar]
- Tan X., Sun X., Gonzalez-Crussi F. X., Gonzalez-Crussi F., Hsueh W. PAF and TNF increase the precursor of NF-kappa B p50 mRNA in mouse intestine: quantitative analysis by competitive PCR. Biochim Biophys Acta. 1994 Nov 17;1215(1-2):157–162. doi: 10.1016/0005-2760(94)90105-8. [DOI] [PubMed] [Google Scholar]