Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 1;339(Pt 3):743–749.

Pig kidney legumain: an asparaginyl endopeptidase with restricted specificity.

P M Dando 1, M Fortunato 1, L Smith 1, C G Knight 1, J E McKendrick 1, A J Barrett 1
PMCID: PMC1220212  PMID: 10215615

Abstract

Legumain was recently discovered as a lysosomal endopeptidase in mammals [Chen, Dando, Rawlings, Brown, Young, Stevens, Hewitt, Watts and Barrett (1997) J. Biol. Chem. 272, 8090-8098], having been known previously only from plants and invertebrates. It has been shown to play a key role in processing of the C fragment of tetanus toxin for presentation by the MHC class-II system [Manoury, Hewitt, Morrice, Dando, Barrett and Watts (1998) Nature (London) 396, 695-699]. We examine here the specificity of the enzyme from pig kidney by use of protein, oligopeptide and synthetic arylamide substrates, all determinations being made at pH 5.8. In proteins, only about one in ten of the asparaginyl bonds were hydrolysed, and these were mostly predicted to be located at turns on the protein surface. Bonds that were not cleaved in tetanus toxin were cleaved when presented in oligopeptides, sometimes faster than an equivalent oligopeptide based on a bond that was cleaved in the protein. Legumain cleaved the bait region of rat alpha1-macroglobulin and was 'trapped' by the macroglobulin, as most other endopeptidases are, but did not interact with human alpha2-macroglobulin, which contains no asparagine residue in its bait region. Glycosylation of asparagine totally prevented hydrolysis by legumain. Specificity for arylamide substrates was evaluated with reference to benzyloxycarbonyl-Ala-Ala-Asn-aminomethylcoumarin, and the preference for the P3-position amino acid was Ala>Tyr(tertiary butyl)>Val>Pro>Phe=Tyr>Leu=Gly. There was no hydrolysis of substrate analogues containing mono- or di-N-methylasparagines, l-2-amino-3-ureidopropionic acid or citrulline in the P1 position. We conclude that mammalian legumain appears to be totally restricted to the hydrolysis of asparaginyl bonds in substrates of all kinds. There seem to be no strong preferences for particular amino acids in other subsites, and yet there are still unidentified factors that prevent hydrolysis of many asparaginyl bonds in proteins.

Full Text

The Full Text of this article is available as a PDF (129.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anastasi A., Knight C. G., Barrett A. J. Characterization of the bacterial metalloendopeptidase pitrilysin by use of a continuous fluorescence assay. Biochem J. 1993 Mar 1;290(Pt 2):601–607. doi: 10.1042/bj2900601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bairoch A., Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998. Nucleic Acids Res. 1998 Jan 1;26(1):38–42. doi: 10.1093/nar/26.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker W. C., Garavelli J. S., Haft D. H., Hunt L. T., Marzec C. R., Orcutt B. C., Srinivasarao G. Y., Yeh L. S., Ledley R. S., Mewes H. W. The PIR-International Protein Sequence Database. Nucleic Acids Res. 1998 Jan 1;26(1):27–32. doi: 10.1093/nar/26.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barrett A. J., Brown M. A., Sayers C. A. The electrophoretically 'slow' and 'fast' forms of the alpha 2-macroglobulin molecule. Biochem J. 1979 Aug 1;181(2):401–418. doi: 10.1042/bj1810401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barrett A. J., Starkey P. M. The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J. 1973 Aug;133(4):709–724. doi: 10.1042/bj1330709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen J. M., Dando P. M., Rawlings N. D., Brown M. A., Young N. E., Stevens R. A., Hewitt E., Watts C., Barrett A. J. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem. 1997 Mar 21;272(12):8090–8098. doi: 10.1074/jbc.272.12.8090. [DOI] [PubMed] [Google Scholar]
  7. Chen J. M., Dando P. M., Stevens R. A., Fortunato M., Barrett A. J. Cloning and expression of mouse legumain, a lysosomal endopeptidase. Biochem J. 1998 Oct 1;335(Pt 1):111–117. doi: 10.1042/bj3350111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen J. M., Rawlings N. D., Stevens R. A., Barrett A. J. Identification of the active site of legumain links it to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases. FEBS Lett. 1998 Dec 28;441(3):361–365. doi: 10.1016/s0014-5793(98)01574-9. [DOI] [PubMed] [Google Scholar]
  9. Dalton J. P., Brindley P. J. Schistosome asparaginyl endopeptidase SM32 in hemoglobin digestion. Parasitol Today. 1996 Mar;12(3):125–125. doi: 10.1016/0169-4758(96)80676-4. [DOI] [PubMed] [Google Scholar]
  10. Glickman J. N., Morton P. A., Slot J. W., Kornfeld S., Geuze H. J. The biogenesis of the MHC class II compartment in human I-cell disease B lymphoblasts. J Cell Biol. 1996 Mar;132(5):769–785. doi: 10.1083/jcb.132.5.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hargrove J. L., Gohda E., Pitot H. C., Granner D. K. Cathepsin T (convertase) generates the multiple forms of tyrosine aminotransferase by limited proteolysis. Biochemistry. 1982 Jan 19;21(2):283–289. doi: 10.1021/bi00531a013. [DOI] [PubMed] [Google Scholar]
  12. Hiraiwa N., Kondo M., Nishimura M., Hara-Nishimura I. An aspartic endopeptidase is involved in the breakdown of propeptides of storage proteins in protein-storage vacuoles of plants. Eur J Biochem. 1997 May 15;246(1):133–141. doi: 10.1111/j.1432-1033.1997.00133.x. [DOI] [PubMed] [Google Scholar]
  13. Hiraiwa N., Nishimura M., Hara-Nishimura I. Expression and activation of the vacuolar processing enzyme in Saccharomyces cerevisiae. Plant J. 1997 Oct;12(4):819–829. doi: 10.1046/j.1365-313x.1997.12040819.x. [DOI] [PubMed] [Google Scholar]
  14. Ishii S. Legumain: asparaginyl endopeptidase. Methods Enzymol. 1994;244:604–615. doi: 10.1016/0076-6879(94)44044-1. [DOI] [PubMed] [Google Scholar]
  15. Kembhavi A. A., Buttle D. J., Knight C. G., Barrett A. J. The two cysteine endopeptidases of legume seeds: purification and characterization by use of specific fluorometric assays. Arch Biochem Biophys. 1993 Jun;303(2):208–213. doi: 10.1006/abbi.1993.1274. [DOI] [PubMed] [Google Scholar]
  16. Knight C. G. Fluorimetric assays of proteolytic enzymes. Methods Enzymol. 1995;248:18–34. doi: 10.1016/0076-6879(95)48004-8. [DOI] [PubMed] [Google Scholar]
  17. Lonberg-Holm K., Reed D. L., Roberts R. C., Hebert R. R., Hillman M. C., Kutney R. M. Three high molecular weight protease inhibitors of rat plasma. Isolation, characterization, and acute phase changes. J Biol Chem. 1987 Jan 5;262(1):438–445. [PubMed] [Google Scholar]
  18. Manoury B., Hewitt E. W., Morrice N., Dando P. M., Barrett A. J., Watts C. An asparaginyl endopeptidase processes a microbial antigen for class II MHC presentation. Nature. 1998 Dec 17;396(6712):695–699. doi: 10.1038/25379. [DOI] [PubMed] [Google Scholar]
  19. Okamoto T., Minamikawa T. Purification of a processing enzyme (VmPE-1) that is involved in post-translational processing of a plant cysteine endopeptidase (SH-EP). Eur J Biochem. 1995 Jul 15;231(2):300–305. doi: 10.1111/j.1432-1033.1995.tb20700.x. [DOI] [PubMed] [Google Scholar]
  20. Sheldon P. S., Keen J. N., Bowles D. J. Post-translational peptide bond formation during concanavalin A processing in vitro. Biochem J. 1996 Dec 15;320(Pt 3):865–870. doi: 10.1042/bj3200865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sottrup-Jensen L., Sand O., Kristensen L., Fey G. H. The alpha-macroglobulin bait region. Sequence diversity and localization of cleavage sites for proteinases in five mammalian alpha-macroglobulins. J Biol Chem. 1989 Sep 25;264(27):15781–15789. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES