Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 1;339(Pt 3):751–758.

Transcriptional autorepression of Msx1 gene is mediated by interactions of Msx1 protein with a multi-protein transcriptional complex containing TATA-binding protein, Sp1 and cAMP-response-element-binding protein-binding protein (CBP/p300).

S Shetty 1, T Takahashi 1, H Matsui 1, R Ayengar 1, R Raghow 1
PMCID: PMC1220213  PMID: 10215616

Abstract

The TATA-less murine Msx1 promoter contains two Msx1-binding motifs, located at -568 to -573 and +25 to +30, and is subject to potent autorepression [Takahashi, Guron, Shetty, Matsui and Raghow (1997) J. Biol. Chem. 272, 22667-22678]. To investigate the molecular mechanism by which Msx1 represses the activity of its own promoter, we transfected C2C12 myoblasts with Msx1-promoter-luciferase constructs and assessed reporter gene activity, with and without the exogenous expression of Msx1. We demonstrate that Msx1-mediated autorepression remained unaffected, regardless of the presence or absence of the Msx1 recognition motifs on the promoter. Furthermore, graded exogenous expression of TATA-binding protein (TBP), Sp1 or cAMP-response-element-binding protein-binding protein (CBP/p300) could counteract the autoinhibitory activity of Msx1. Finally, we demonstrate that Msx1 protein can be immunoprecipitated in a multiprotein complex containing TBP, Sp1 and CBP/p300. We hypothesize that the interaction of Msx1 protein with one or more ubiquitous or tissue-restricted transcription factors mediates transcriptional autorepression of the Msx1 gene.

Full Text

The Full Text of this article is available as a PDF (170.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akimaru H., Chen Y., Dai P., Hou D. X., Nonaka M., Smolik S. M., Armstrong S., Goodman R. H., Ishii S. Drosophila CBP is a co-activator of cubitus interruptus in hedgehog signalling. Nature. 1997 Apr 17;386(6626):735–738. doi: 10.1038/386735a0. [DOI] [PubMed] [Google Scholar]
  2. Bannister A. J., Oehler T., Wilhelm D., Angel P., Kouzarides T. Stimulation of c-Jun activity by CBP: c-Jun residues Ser63/73 are required for CBP induced stimulation in vivo and CBP binding in vitro. Oncogene. 1995 Dec 21;11(12):2509–2514. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  5. Catron K. M., Wang H., Hu G., Shen M. M., Abate-Shen C. Comparison of MSX-1 and MSX-2 suggests a molecular basis for functional redundancy. Mech Dev. 1996 Apr;55(2):185–199. doi: 10.1016/0925-4773(96)00503-5. [DOI] [PubMed] [Google Scholar]
  6. Catron K. M., Zhang H., Marshall S. C., Inostroza J. A., Wilson J. M., Abate C. Transcriptional repression by Msx-1 does not require homeodomain DNA-binding sites. Mol Cell Biol. 1995 Feb;15(2):861–871. doi: 10.1128/mcb.15.2.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chrivia J. C., Kwok R. P., Lamb N., Hagiwara M., Montminy M. R., Goodman R. H. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993 Oct 28;365(6449):855–859. doi: 10.1038/365855a0. [DOI] [PubMed] [Google Scholar]
  8. Colgan J., Manley J. L. TFIID can be rate limiting in vivo for TATA-containing, but not TATA-lacking, RNA polymerase II promoters. Genes Dev. 1992 Feb;6(2):304–315. doi: 10.1101/gad.6.2.304. [DOI] [PubMed] [Google Scholar]
  9. Dai P., Akimaru H., Tanaka Y., Hou D. X., Yasukawa T., Kanei-Ishii C., Takahashi T., Ishii S. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 1996 Mar 1;10(5):528–540. doi: 10.1101/gad.10.5.528. [DOI] [PubMed] [Google Scholar]
  10. Davidson D. The function and evolution of Msx genes: pointers and paradoxes. Trends Genet. 1995 Oct;11(10):405–411. doi: 10.1016/s0168-9525(00)89124-6. [DOI] [PubMed] [Google Scholar]
  11. Foerst-Potts L., Sadler T. W. Disruption of Msx-1 and Msx-2 reveals roles for these genes in craniofacial, eye, and axial development. Dev Dyn. 1997 May;209(1):70–84. doi: 10.1002/(SICI)1097-0177(199705)209:1<70::AID-AJA7>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  12. Giles R. H., Peters D. J., Breuning M. H. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 1998 May;14(5):178–183. doi: 10.1016/s0168-9525(98)01438-3. [DOI] [PubMed] [Google Scholar]
  13. Houzelstein D., Cohen A., Buckingham M. E., Robert B. Insertional mutation of the mouse Msx1 homeobox gene by an nlacZ reporter gene. Mech Dev. 1997 Jul;65(1-2):123–133. doi: 10.1016/s0925-4773(97)00065-8. [DOI] [PubMed] [Google Scholar]
  14. Ivens A., Flavin N., Williamson R., Dixon M., Bates G., Buckingham M., Robert B. The human homeobox gene HOX7 maps to chromosome 4p16.1 and may be implicated in Wolf-Hirschhorn syndrome. Hum Genet. 1990 Apr;84(5):473–476. doi: 10.1007/BF00195823. [DOI] [PubMed] [Google Scholar]
  15. Jabs E. W., Müller U., Li X., Ma L., Luo W., Haworth I. S., Klisak I., Sparkes R., Warman M. L., Mulliken J. B. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell. 1993 Nov 5;75(3):443–450. doi: 10.1016/0092-8674(93)90379-5. [DOI] [PubMed] [Google Scholar]
  16. Kuzuoka M., Takahashi T., Guron C., Raghow R. Murine homeobox-containing gene, Msx-1: analysis of genomic organization, promoter structure, and potential autoregulatory cis-acting elements. Genomics. 1994 May 1;21(1):85–91. doi: 10.1006/geno.1994.1228. [DOI] [PubMed] [Google Scholar]
  17. Kwok R. P., Lundblad J. R., Chrivia J. C., Richards J. P., Bächinger H. P., Brennan R. G., Roberts S. G., Green M. R., Goodman R. H. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature. 1994 Jul 21;370(6486):223–226. doi: 10.1038/370223a0. [DOI] [PubMed] [Google Scholar]
  18. Marazzi G., Wang Y., Sassoon D. Msx2 is a transcriptional regulator in the BMP4-mediated programmed cell death pathway. Dev Biol. 1997 Jun 15;186(2):127–138. doi: 10.1006/dbio.1997.8576. [DOI] [PubMed] [Google Scholar]
  19. Pugh B. F., Tjian R. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell. 1990 Jun 29;61(7):1187–1197. doi: 10.1016/0092-8674(90)90683-6. [DOI] [PubMed] [Google Scholar]
  20. Sanchez-Madrid F., Simon P., Thompson S., Springer T. A. Mapping of antigenic and functional epitopes on the alpha- and beta-subunits of two related mouse glycoproteins involved in cell interactions, LFA-1 and Mac-1. J Exp Med. 1983 Aug 1;158(2):586–602. doi: 10.1084/jem.158.2.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Satokata I., Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet. 1994 Apr;6(4):348–356. doi: 10.1038/ng0494-348. [DOI] [PubMed] [Google Scholar]
  22. Shimeld S. M., McKay I. J., Sharpe P. T. The murine homeobox gene Msx-3 shows highly restricted expression in the developing neural tube. Mech Dev. 1996 Apr;55(2):201–210. doi: 10.1016/0925-4773(96)00505-9. [DOI] [PubMed] [Google Scholar]
  23. Song K., Wang Y., Sassoon D. Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature. 1992 Dec 3;360(6403):477–481. doi: 10.1038/360477a0. [DOI] [PubMed] [Google Scholar]
  24. Takahashi T., Guron C., Shetty S., Matsui H., Raghow R. A minimal murine Msx-1 gene promoter. Organization of its cis-regulatory motifs and their role in transcriptional activation in cells in culture and in transgenic mice. J Biol Chem. 1997 Sep 5;272(36):22667–22678. doi: 10.1074/jbc.272.36.22667. [DOI] [PubMed] [Google Scholar]
  25. Vastardis H., Karimbux N., Guthua S. W., Seidman J. G., Seidman C. E. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet. 1996 Aug;13(4):417–421. doi: 10.1038/ng0896-417. [DOI] [PubMed] [Google Scholar]
  26. Viñals F., Fandos C., Santalucia T., Ferré J., Testar X., Palacín M., Zorzano A. Myogenesis and MyoD down-regulate Sp1. A mechanism for the repression of GLUT1 during muscle cell differentiation. J Biol Chem. 1997 May 16;272(20):12913–12921. doi: 10.1074/jbc.272.20.12913. [DOI] [PubMed] [Google Scholar]
  27. Woloshin P., Song K., Degnin C., Killary A. M., Goldhamer D. J., Sassoon D., Thayer M. J. MSX1 inhibits myoD expression in fibroblast x 10T1/2 cell hybrids. Cell. 1995 Aug 25;82(4):611–620. doi: 10.1016/0092-8674(95)90033-0. [DOI] [PubMed] [Google Scholar]
  28. Yuan W., Condorelli G., Caruso M., Felsani A., Giordano A. Human p300 protein is a coactivator for the transcription factor MyoD. J Biol Chem. 1996 Apr 12;271(15):9009–9013. doi: 10.1074/jbc.271.15.9009. [DOI] [PubMed] [Google Scholar]
  29. Zhang H., Catron K. M., Abate-Shen C. A role for the Msx-1 homeodomain in transcriptional regulation: residues in the N-terminal arm mediate TATA binding protein interaction and transcriptional repression. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1764–1769. doi: 10.1073/pnas.93.5.1764. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES