Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 15;340(Pt 1):25–32.

Inositol acylation of glycosylphosphatidylinositols in the pathogenic fungus Cryptococcus neoformans and the model yeast Saccharomyces cerevisiae.

S P Franzot 1, T L Doering 1
PMCID: PMC1220218  PMID: 10229655

Abstract

Cryptococcus neoformans, an opportunistic fungus responsible for life-threatening infection in immunocompromised patients, is able to synthesize glycosylphosphatidylinositol (GPI) structures. Radiolabelling experiments in vitro with the use of a cryptococcal cell-free system showed that the pathway begins as in other eukaryotes, with the addition of N-acetylglucosamine to phosphatidylinositol, followed by deacetylation of the sugar residue. The third step, acylation of the inositol ring, seemed to involve a fatty acid other than palmitate, in contrast with previous findings in Saccharomyces cerevisiae and mammalian GPI pathways. A systematic study of inositol acylation in C. neoformans and S. cerevisiae showed that both organisms used a variety of fatty acids in this step; these were transferred directly from acyl-CoA to inositol without modification. However, the specificity of fatty acid utilization was quite distinct in the two fungi, with the pathogen being substantially more restrictive. In mammalian cells fatty acids added exogenously as acyl-CoAs are not transferred directly to inositol. These results suggest significant differences in the GPI biosynthetic pathway between mammalian and C. neoformans cells that could represent targets for anti-cryptococcal therapy.

Full Text

The Full Text of this article is available as a PDF (285.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buxbaum L. U., Raper J., Opperdoes F. R., Englund P. T. Myristate exchange. A second glycosyl phosphatidylinositol myristoylation reaction in African trypanosomes. J Biol Chem. 1994 Dec 2;269(48):30212–30220. [PubMed] [Google Scholar]
  2. Cherniak R., Sundstrom J. B. Polysaccharide antigens of the capsule of Cryptococcus neoformans. Infect Immun. 1994 May;62(5):1507–1512. doi: 10.1128/iai.62.5.1507-1512.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Costello L. C., Orlean P. Inositol acylation of a potential glycosyl phosphoinositol anchor precursor from yeast requires acyl coenzyme A. J Biol Chem. 1992 Apr 25;267(12):8599–8603. [PubMed] [Google Scholar]
  4. Currie B. P., Casadevall A. Estimation of the prevalence of cryptococcal infection among patients infected with the human immunodeficiency virus in New York City. Clin Infect Dis. 1994 Dec;19(6):1029–1033. doi: 10.1093/clinids/19.6.1029. [DOI] [PubMed] [Google Scholar]
  5. Doering T. L., Lu T., Werbovetz K. A., Gokel G. W., Hart G. W., Gordon J. I., Englund P. T. Toxicity of myristic acid analogs toward African trypanosomes. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9735–9739. doi: 10.1073/pnas.91.21.9735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doering T. L., Pessin M. S., Hoff E. F., Hart G. W., Raben D. M., Englund P. T. Trypanosome metabolism of myristate, the fatty acid required for the variant surface glycoprotein membrane anchor. J Biol Chem. 1993 May 5;268(13):9215–9222. [PubMed] [Google Scholar]
  7. Doerrler W. T., Ye J., Falck J. R., Lehrman M. A. Acylation of glucosaminyl phosphatidylinositol revisited. Palmitoyl-CoA dependent palmitoylation of the inositol residue of a synthetic dioctanoyl glucosaminyl phosphatidylinositol by hamster membranes permits efficient mannosylation of the glucosamine residue. J Biol Chem. 1996 Oct 25;271(43):27031–27038. doi: 10.1074/jbc.271.43.27031. [DOI] [PubMed] [Google Scholar]
  8. Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
  9. Gerold P., Schofield L., Blackman M. J., Holder A. A., Schwarz R. T. Structural analysis of the glycosyl-phosphatidylinositol membrane anchor of the merozoite surface proteins-1 and -2 of Plasmodium falciparum. Mol Biochem Parasitol. 1996 Jan;75(2):131–143. doi: 10.1016/0166-6851(95)02518-9. [DOI] [PubMed] [Google Scholar]
  10. Güther M. L., Masterson W. J., Ferguson M. A. The effects of phenylmethylsulfonyl fluoride on inositol-acylation and fatty acid remodeling in African trypanosomes. J Biol Chem. 1994 Jul 15;269(28):18694–18701. [PubMed] [Google Scholar]
  11. Güther M. L., Treumann A., Ferguson M. A. Molecular species analysis and quantification of the glycosylphosphatidylinositol intermediate glycolipid C from Trypanosoma brucei. Mol Biochem Parasitol. 1996 May;77(2):137–145. doi: 10.1016/0166-6851(96)02585-6. [DOI] [PubMed] [Google Scholar]
  12. Hirose S., Prince G. M., Sevlever D., Ravi L., Rosenberry T. L., Ueda E., Medof M. E. Characterization of putative glycoinositol phospholipid anchor precursors in mammalian cells. Localization of phosphoethanolamine. J Biol Chem. 1992 Aug 25;267(24):16968–16974. [PubMed] [Google Scholar]
  13. Jacobson E. S., Ayers D. J., Harrell A. C., Nicholas C. C. Genetic and phenotypic characterization of capsule mutants of Cryptococcus neoformans. J Bacteriol. 1982 Jun;150(3):1292–1296. doi: 10.1128/jb.150.3.1292-1296.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson D. R., Bhatnagar R. S., Knoll L. J., Gordon J. I. Genetic and biochemical studies of protein N-myristoylation. Annu Rev Biochem. 1994;63:869–914. doi: 10.1146/annurev.bi.63.070194.004253. [DOI] [PubMed] [Google Scholar]
  15. Kinoshita T., Ohishi K., Takeda J. GPI-anchor synthesis in mammalian cells: genes, their products, and a deficiency. J Biochem. 1997 Aug;122(2):251–257. doi: 10.1093/oxfordjournals.jbchem.a021746. [DOI] [PubMed] [Google Scholar]
  16. Langner C. A., Lodge J. K., Travis S. J., Caldwell J. E., Lu T., Li Q., Bryant M. L., Devadas B., Gokel G. W., Kobayashi G. S. 4-oxatetradecanoic acid is fungicidal for Cryptococcus neoformans and inhibits replication of human immunodeficiency virus I. J Biol Chem. 1992 Aug 25;267(24):17159–17169. [PubMed] [Google Scholar]
  17. Leidich S. D., Drapp D. A., Orlean P. A conditionally lethal yeast mutant blocked at the first step in glycosyl phosphatidylinositol anchor synthesis. J Biol Chem. 1994 Apr 8;269(14):10193–10196. [PubMed] [Google Scholar]
  18. Masterson W. J., Doering T. L., Hart G. W., Englund P. T. A novel pathway for glycan assembly: biosynthesis of the glycosyl-phosphatidylinositol anchor of the trypanosome variant surface glycoprotein. Cell. 1989 Mar 10;56(5):793–800. doi: 10.1016/0092-8674(89)90684-3. [DOI] [PubMed] [Google Scholar]
  19. Masterson W. J., Raper J., Doering T. L., Hart G. W., Englund P. T. Fatty acid remodeling: a novel reaction sequence in the biosynthesis of trypanosome glycosyl phosphatidylinositol membrane anchors. Cell. 1990 Jul 13;62(1):73–80. doi: 10.1016/0092-8674(90)90241-6. [DOI] [PubMed] [Google Scholar]
  20. Mayor S., Menon A. K., Cross G. A. Glycolipid precursors for the membrane anchor of Trypanosoma brucei variant surface glycoproteins. II. Lipid structures of phosphatidylinositol-specific phospholipase C sensitive and resistant glycolipids. J Biol Chem. 1990 Apr 15;265(11):6174–6181. [PubMed] [Google Scholar]
  21. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Menon A. K., Baumann N. A., van't Hof W., Vidugiriene J. Glycosylphosphatidylinositols: biosynthesis and intracellular transport. Biochem Soc Trans. 1997 Aug;25(3):861–865. doi: 10.1042/bst0250861. [DOI] [PubMed] [Google Scholar]
  23. Mitchell T. G., Perfect J. R. Cryptococcosis in the era of AIDS--100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev. 1995 Oct;8(4):515–548. doi: 10.1128/cmr.8.4.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roberts W. L., Myher J. J., Kuksis A., Low M. G., Rosenberry T. L. Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C. J Biol Chem. 1988 Dec 15;263(35):18766–18775. [PubMed] [Google Scholar]
  25. Sevlever D., Humphrey D. R., Rosenberry T. L. Compositional analysis of glucosaminyl(acyl)phosphatidylinositol accumulated in HeLa S3 cells. Eur J Biochem. 1995 Oct 1;233(1):384–394. doi: 10.1111/j.1432-1033.1995.384_1.x. [DOI] [PubMed] [Google Scholar]
  26. Smit E. J., Kock J. L., van der Westhuizen J. P., Britz T. J. Taxonomic relationships of Cryptococcus and Tremella based on fatty acid composition and other phenotypic characters. J Gen Microbiol. 1988 Oct;134(10):2849–2855. doi: 10.1099/00221287-134-10-2849. [DOI] [PubMed] [Google Scholar]
  27. Smith T. K., Sharma D. K., Crossman A., Dix A., Brimacombe J. S., Ferguson M. A. Parasite and mammalian GPI biosynthetic pathways can be distinguished using synthetic substrate analogues. EMBO J. 1997 Nov 17;16(22):6667–6675. doi: 10.1093/emboj/16.22.6667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stevens V. L., Zhang H. Coenzyme A dependence of glycosylphosphatidylinositol biosynthesis in a mammalian cell-free system. J Biol Chem. 1994 Dec 16;269(50):31397–31403. [PubMed] [Google Scholar]
  29. Treumann A., Zitzmann N., Hülsmeier A., Prescott A. R., Almond A., Sheehan J., Ferguson M. A. Structural characterisation of two forms of procyclic acidic repetitive protein expressed by procyclic forms of Trypanosoma brucei. J Mol Biol. 1997 Jun 20;269(4):529–547. doi: 10.1006/jmbi.1997.1066. [DOI] [PubMed] [Google Scholar]
  30. Urakaze M., Kamitani T., DeGasperi R., Sugiyama E., Chang H. M., Warren C. D., Yeh E. T. Identification of a missing link in glycosylphosphatidylinositol anchor biosynthesis in mammalian cells. J Biol Chem. 1992 Apr 5;267(10):6459–6462. [PubMed] [Google Scholar]
  31. Wilson D. E., Bennett J. E., Bailey J. W. Serologic grouping of Cryptococcus neoformans. Proc Soc Exp Biol Med. 1968 Mar;127(3):820–823. doi: 10.3181/00379727-127-32812. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES