Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 15;340(Pt 1):113–117.

Expression and alteration of the S2 subsite of the Leishmania major cathepsin B-like cysteine protease.

V J Chan 1, P M Selzer 1, J H McKerrow 1, J A Sakanari 1
PMCID: PMC1220228  PMID: 10229665

Abstract

The mature form of the cathepsin B-like protease of Leishmania major (LmajcatB) is a 243 amino acid protein belonging to the papain family of cysteine proteases and is 54% identical to human-liver cathepsin B. Despite the high identity and structural similarity with cathepsin B, LmajcatB does not readily hydrolyse benzyloxycarbonyl-Arg-Arg-7-amino-4-methyl coumarin (Z-Arg-Arg-AMC), which is cleaved by cathepsin B enzymes. It does, however, hydrolyse Z-Phe-Arg-AMC, a substrate typically cleaved by cathepsin L and B enzymes. Based upon computer generated protein models of LmajcatB and mammalian cathepsin B, it was predicted that this variation in substrate specificity was attributed to Gly234 at the S2 subsite of LmajcatB, which forms a larger, more hydrophobic pocket compared with mammalian cathepsin B. To test this hypothesis, recombinant LmajcatB was expressed in the Pichia pastoris yeast expression system. The quality of the recombinant enzyme was confirmed by kinetic characterization, N-terminal sequencing, and Western blot analysis. Alteration of Gly234 to Glu, which is found at the corresponding site in mammalian cathepsin B, increased recombinant LmajcatB (rLmajcatB) activity toward Z-Arg-Arg-AMC 8-fold over the wild-type recombinant enzyme (kcat/Km=3740+/-413 M-1.s-1 versus 472+/-72.4 M-1.s-1). The results of inhibition assays of rLmajcatB with an inhibitor of cathepsin L enzymes, K11002 (morpholine urea-Phe-homoPhe-vinylsulphonylphenyl, kinact/Ki=208200+/-36000 M-1. s-1), and a cathepsin B specific inhibitor, CA074 [N-(L-3-trans-propylcarbamoyloxirane-2-carbonyl)-l-isoleucyl-l- prolin e, kinact/Ki=199200+/-32900 M-1.s-1], support the findings that this protozoan protease has the P2 specificity of cathepsin L-like enzymes while retaining structural homology to mammalian cathepsin B.

Full Text

The Full Text of this article is available as a PDF (146.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
  2. Brömme D., Klaus J. L., Okamoto K., Rasnick D., Palmer J. T. Peptidyl vinyl sulphones: a new class of potent and selective cysteine protease inhibitors: S2P2 specificity of human cathepsin O2 in comparison with cathepsins S and L. Biochem J. 1996 Apr 1;315(Pt 1):85–89. doi: 10.1042/bj3150085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buttle D. J., Murata M., Knight C. G., Barrett A. J. CA074 methyl ester: a proinhibitor for intracellular cathepsin B. Arch Biochem Biophys. 1992 Dec;299(2):377–380. doi: 10.1016/0003-9861(92)90290-d. [DOI] [PubMed] [Google Scholar]
  4. Coombs G. H., Baxter J. Inhibition of Leishmania amastigote growth by antipain and leupeptin. Ann Trop Med Parasitol. 1984 Feb;78(1):21–24. doi: 10.1080/00034983.1984.11811768. [DOI] [PubMed] [Google Scholar]
  5. Coombs G. H., Hart D. T., Capaldo J. Proteinase inhibitors as antileishmanial agents. Trans R Soc Trop Med Hyg. 1982;76(5):660–663. doi: 10.1016/0035-9203(82)90236-x. [DOI] [PubMed] [Google Scholar]
  6. Feng M. H., Chan S. L., Xiang Y., Huber C. P., Lim C. The binding mode of an E-64 analog to the active site of cathepsin B. Protein Eng. 1996 Nov;9(11):977–986. doi: 10.1093/protein/9.11.977. [DOI] [PubMed] [Google Scholar]
  7. Harth G., Andrews N., Mills A. A., Engel J. C., Smith R., McKerrow J. H. Peptide-fluoromethyl ketones arrest intracellular replication and intercellular transmission of Trypanosoma cruzi. Mol Biochem Parasitol. 1993 Mar;58(1):17–24. doi: 10.1016/0166-6851(93)90086-d. [DOI] [PubMed] [Google Scholar]
  8. Hasnain S., Hirama T., Huber C. P., Mason P., Mort J. S. Characterization of cathepsin B specificity by site-directed mutagenesis. Importance of Glu245 in the S2-P2 specificity for arginine and its role in transition state stabilization. J Biol Chem. 1993 Jan 5;268(1):235–240. [PubMed] [Google Scholar]
  9. Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Illy C., Quraishi O., Wang J., Purisima E., Vernet T., Mort J. S. Role of the occluding loop in cathepsin B activity. J Biol Chem. 1997 Jan 10;272(2):1197–1202. doi: 10.1074/jbc.272.2.1197. [DOI] [PubMed] [Google Scholar]
  11. Jia Z., Hasnain S., Hirama T., Lee X., Mort J. S., To R., Huber C. P. Crystal structures of recombinant rat cathepsin B and a cathepsin B-inhibitor complex. Implications for structure-based inhibitor design. J Biol Chem. 1995 Mar 10;270(10):5527–5533. doi: 10.1074/jbc.270.10.5527. [DOI] [PubMed] [Google Scholar]
  12. Khouri H. E., Vernet T., Ménard R., Parlati F., Laflamme P., Tessier D. C., Gour-Salin B., Thomas D. Y., Storer A. C. Engineering of papain: selective alteration of substrate specificity by site-directed mutagenesis. Biochemistry. 1991 Sep 17;30(37):8929–8936. doi: 10.1021/bi00101a003. [DOI] [PubMed] [Google Scholar]
  13. Meirelles M. N., Juliano L., Carmona E., Silva S. G., Costa E. M., Murta A. C., Scharfstein J. Inhibitors of the major cysteinyl proteinase (GP57/51) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vitro. Mol Biochem Parasitol. 1992 Jun;52(2):175–184. doi: 10.1016/0166-6851(92)90050-t. [DOI] [PubMed] [Google Scholar]
  14. Mottram J. C., Souza A. E., Hutchison J. E., Carter R., Frame M. J., Coombs G. H. Evidence from disruption of the lmcpb gene array of Leishmania mexicana that cysteine proteinases are virulence factors. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6008–6013. doi: 10.1073/pnas.93.12.6008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murata M., Miyashita S., Yokoo C., Tamai M., Hanada K., Hatayama K., Towatari T., Nikawa T., Katunuma N. Novel epoxysuccinyl peptides. Selective inhibitors of cathepsin B, in vitro. FEBS Lett. 1991 Mar 25;280(2):307–310. doi: 10.1016/0014-5793(91)80318-w. [DOI] [PubMed] [Google Scholar]
  16. Musil D., Zucic D., Turk D., Engh R. A., Mayr I., Huber R., Popovic T., Turk V., Towatari T., Katunuma N. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 1991 Sep;10(9):2321–2330. doi: 10.1002/j.1460-2075.1991.tb07771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. North M. J., Mottram J. C., Coombs G. H. Cysteine proteinases of parasitic protozoa. Parasitol Today. 1990 Aug;6(8):270–275. doi: 10.1016/0169-4758(90)90189-b. [DOI] [PubMed] [Google Scholar]
  18. Ring C. S., Sun E., McKerrow J. H., Lee G. K., Rosenthal P. J., Kuntz I. D., Cohen F. E. Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3583–3587. doi: 10.1073/pnas.90.8.3583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rosenthal P. J., Olson J. E., Lee G. K., Palmer J. T., Klaus J. L., Rasnick D. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. Antimicrob Agents Chemother. 1996 Jul;40(7):1600–1603. doi: 10.1128/aac.40.7.1600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosenthal P. J., Wollish W. S., Palmer J. T., Rasnick D. Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J Clin Invest. 1991 Nov;88(5):1467–1472. doi: 10.1172/JCI115456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rowan A. D., Mason P., Mach L., Mort J. S. Rat procathepsin B. Proteolytic processing to the mature form in vitro. J Biol Chem. 1992 Aug 5;267(22):15993–15999. [PubMed] [Google Scholar]
  22. Sakanari J. A., Nadler S. A., Chan V. J., Engel J. C., Leptak C., Bouvier J. Leishmania major: comparison of the cathepsin L- and B-like cysteine protease genes with those of other trypanosomatids. Exp Parasitol. 1997 Jan;85(1):63–76. doi: 10.1006/expr.1996.4116. [DOI] [PubMed] [Google Scholar]
  23. Selzer P. M., Chen X., Chan V. J., Cheng M., Kenyon G. L., Kuntz I. D., Sakanari J. A., Cohen F. E., McKerrow J. H. Leishmania major: molecular modeling of cysteine proteases and prediction of new nonpeptide inhibitors. Exp Parasitol. 1997 Nov;87(3):212–221. doi: 10.1006/expr.1997.4220. [DOI] [PubMed] [Google Scholar]
  24. Sun E., Cohen F. E. Computer-assisted drug discovery--a review. Gene. 1993 Dec 27;137(1):127–132. doi: 10.1016/0378-1119(93)90260-a. [DOI] [PubMed] [Google Scholar]
  25. Towatari T., Nikawa T., Murata M., Yokoo C., Tamai M., Hanada K., Katunuma N. Novel epoxysuccinyl peptides. A selective inhibitor of cathepsin B, in vivo. FEBS Lett. 1991 Mar 25;280(2):311–315. doi: 10.1016/0014-5793(91)80319-x. [DOI] [PubMed] [Google Scholar]
  26. Turk D., Podobnik M., Popovic T., Katunuma N., Bode W., Huber R., Turk V. Crystal structure of cathepsin B inhibited with CA030 at 2.0-A resolution: A basis for the design of specific epoxysuccinyl inhibitors. Biochemistry. 1995 Apr 11;34(14):4791–4797. doi: 10.1021/bi00014a037. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES