Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 15;340(Pt 1):171–181.

Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling.

J L Ashworth 1, G Murphy 1, M J Rock 1, M J Sherratt 1, S D Shapiro 1, C A Shuttleworth 1, C M Kielty 1
PMCID: PMC1220235  PMID: 10229672

Abstract

Fibrillin is the principal structural component of the 10-12 nm diameter elastic microfibrils of the extracellular matrix. We have previously shown that both fibrillin molecules and assembled microfibrils are susceptible to degradation by serine proteases. In this study, we have investigated the potential catabolic effects of six matrix metalloproteinases (MMP-2, MMP-3, MMP-9, MMP-12, MMP-13 and MMP-14) on fibrillin molecules and on intact fibrillin-rich microfibrils isolated from ciliary zonules. Using newly synthesized recombinant fibrillin molecules, major cleavage sites within fibrillin-1 were identified. In particular, the six different MMPs generated a major degradation product of approximately 45 kDa from the N-terminal region of the molecule, whereas treatment of truncated, unprocessed and furin-processed C-termini also generated large degradation products. Introduction of a single ectopia lentis-causing amino acid substitution (E2447K; one-letter symbols for amino acids) in a calcium-binding epidermal growth factor-like domain, predicted to disrupt calcium binding, markedly altered the pattern of C-terminal fibrillin-1 degradation. However, the fragmentation pattern of a mutant fibrillin-1 with a comparable E-->K substitution in an upstream calcium-binding epidermal growth factor-like domain was indistinguishable from wild-type molecules. Ultrastructural examination highlighted that fibrillin-rich microfibrils isolated from ciliary zonules were grossly disrupted by MMPs. This is the first demonstration that fibrillin molecules and fibrillin-rich microfibrils are degraded by MMPs and that certain amino acid substitutions change the fragmentation patterns. These studies have important implications for physiological and pathological fibrillin catabolism and for loss of connective tissue elasticity in ageing and disease.

Full Text

The Full Text of this article is available as a PDF (560.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando H., Twining S. S., Yue B. Y., Zhou X., Fini M. E., Kaiya T., Higginbotham E. J., Sugar J. MMPs and proteinase inhibitors in the human aqueous humor. Invest Ophthalmol Vis Sci. 1993 Dec;34(13):3541–3548. [PubMed] [Google Scholar]
  2. Brown-Augsburger P., Broekelmann T., Mecham L., Mercer R., Gibson M. A., Cleary E. G., Abrams W. R., Rosenbloom J., Mecham R. P. Microfibril-associated glycoprotein binds to the carboxyl-terminal domain of tropoelastin and is a substrate for transglutaminase. J Biol Chem. 1994 Nov 11;269(45):28443–28449. [PubMed] [Google Scholar]
  3. Brown D., Hamdi H., Bahri S., Kenney M. C. Characterization of an endogenous metalloproteinase in human vitreous. Curr Eye Res. 1994 Sep;13(9):639–647. doi: 10.3109/02713689408999899. [DOI] [PubMed] [Google Scholar]
  4. Cardy C. M., Handford P. A. Metal ion dependency of microfibrils supports a rod-like conformation for fibrillin-1 calcium-binding epidermal growth factor-like domains. J Mol Biol. 1998 Mar 13;276(5):855–860. doi: 10.1006/jmbi.1997.1593. [DOI] [PubMed] [Google Scholar]
  5. Chambers A. F., Matrisian L. M. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 1997 Sep 3;89(17):1260–1270. doi: 10.1093/jnci/89.17.1260. [DOI] [PubMed] [Google Scholar]
  6. Corson G. M., Chalberg S. C., Dietz H. C., Charbonneau N. L., Sakai L. Y. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5' end. Genomics. 1993 Aug;17(2):476–484. doi: 10.1006/geno.1993.1350. [DOI] [PubMed] [Google Scholar]
  7. De La Paz M. A., Itoh Y., Toth C. A., Nagase H. Matrix metalloproteinases and their inhibitors in human vitreous. Invest Ophthalmol Vis Sci. 1998 Jun;39(7):1256–1260. [PubMed] [Google Scholar]
  8. Dietz H. C., Pyeritz R. E. Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum Mol Genet. 1995;4(Spec No):1799–1809. doi: 10.1093/hmg/4.suppl_1.1799. [DOI] [PubMed] [Google Scholar]
  9. Gibson M. A., Kumaratilake J. S., Cleary E. G. The protein components of the 12-nanometer microfibrils of elastic and nonelastic tissues. J Biol Chem. 1989 Mar 15;264(8):4590–4598. [PubMed] [Google Scholar]
  10. Gronski T. J., Jr, Martin R. L., Kobayashi D. K., Walsh B. C., Holman M. C., Huber M., Van Wart H. E., Shapiro S. D. Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J Biol Chem. 1997 May 2;272(18):12189–12194. doi: 10.1074/jbc.272.18.12189. [DOI] [PubMed] [Google Scholar]
  11. Guggenheim J. A., McBrien N. A. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew. Invest Ophthalmol Vis Sci. 1996 Jun;37(7):1380–1395. [PubMed] [Google Scholar]
  12. Illidge C., Kielty C., Shuttleworth A. The alpha1(VIII) and alpha2(VIII) chains of type VIII collagen can form stable homotrimeric molecules. J Biol Chem. 1998 Aug 21;273(34):22091–22095. doi: 10.1074/jbc.273.34.22091. [DOI] [PubMed] [Google Scholar]
  13. Jeng A. Y., Wong M., Duelfer T., Shapiro S. D., Kramer R. A., Hu S. Mouse macrophage metalloelastase expressed in bacteria absolutely requires zinc for activity. J Biochem. 1995 Jan;117(1):216–221. doi: 10.1093/oxfordjournals.jbchem.a124713. [DOI] [PubMed] [Google Scholar]
  14. Kainulainen K., Karttunen L., Puhakka L., Sakai L., Peltonen L. Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nat Genet. 1994 Jan;6(1):64–69. doi: 10.1038/ng0194-64. [DOI] [PubMed] [Google Scholar]
  15. Keene D. R., Maddox B. K., Kuo H. J., Sakai L. Y., Glanville R. W. Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem Cytochem. 1991 Apr;39(4):441–449. doi: 10.1177/39.4.2005373. [DOI] [PubMed] [Google Scholar]
  16. Kielty C. M., Cummings C., Whittaker S. P., Shuttleworth C. A., Grant M. E. Isolation and ultrastructural analysis of microfibrillar structures from foetal bovine elastic tissues. Relative abundance and supramolecular architecture of type VI collagen assemblies and fibrillin. J Cell Sci. 1991 Aug;99(Pt 4):797–807. doi: 10.1242/jcs.99.4.797. [DOI] [PubMed] [Google Scholar]
  17. Kielty C. M., Hanssen E., Shuttleworth C. A. Purification of fibrillin-containing microfibrils and collagen VI microfibrils by density gradient centrifugation. Anal Biochem. 1998 Jan 1;255(1):108–112. doi: 10.1006/abio.1997.2442. [DOI] [PubMed] [Google Scholar]
  18. Kielty C. M., Phillips J. E., Child A. H., Pope F. M., Shuttleworth C. A. Fibrillin secretion and microfibril assembly by Marfan dermal fibroblasts. Matrix Biol. 1994 Mar;14(2):191–199. doi: 10.1016/0945-053x(94)90008-6. [DOI] [PubMed] [Google Scholar]
  19. Kielty C. M., Raghunath M., Siracusa L. D., Sherratt M. J., Peters R., Shuttleworth C. A., Jimenez S. A. The Tight skin mouse: demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils. J Cell Biol. 1998 Mar 9;140(5):1159–1166. doi: 10.1083/jcb.140.5.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kielty C. M., Shuttleworth C. A. Abnormal fibrillin assembly by dermal fibroblasts from two patients with Marfan syndrome. J Cell Biol. 1994 Mar;124(6):997–1004. doi: 10.1083/jcb.124.6.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kielty C. M., Shuttleworth C. A. Fibrillin-containing microfibrils: structure and function in health and disease. Int J Biochem Cell Biol. 1995 Aug;27(8):747–760. doi: 10.1016/1357-2725(95)00028-n. [DOI] [PubMed] [Google Scholar]
  22. Kielty C. M., Shuttleworth C. A. Microfibrillar elements of the dermal matrix. Microsc Res Tech. 1997 Aug 15;38(4):413–427. doi: 10.1002/(SICI)1097-0029(19970815)38:4<413::AID-JEMT9>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  23. Kielty C. M., Woolley D. E., Whittaker S. P., Shuttleworth C. A. Catabolism of intact fibrillin microfibrils by neutrophil elastase, chymotrypsin and trypsin. FEBS Lett. 1994 Aug 29;351(1):85–89. doi: 10.1016/0014-5793(94)00818-3. [DOI] [PubMed] [Google Scholar]
  24. Knäuper V., López-Otin C., Smith B., Knight G., Murphy G. Biochemical characterization of human collagenase-3. J Biol Chem. 1996 Jan 19;271(3):1544–1550. doi: 10.1074/jbc.271.3.1544. [DOI] [PubMed] [Google Scholar]
  25. Koklitis P. A., Murphy G., Sutton C., Angal S. Purification of recombinant human prostromelysin. Studies on heat activation to give high-Mr and low-Mr active forms, and a comparison of recombinant with natural stromelysin activities. Biochem J. 1991 May 15;276(Pt 1):217–221. doi: 10.1042/bj2760217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lees J. F., Tasab M., Bulleid N. J. Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J. 1997 Mar 3;16(5):908–916. doi: 10.1093/emboj/16.5.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Liu W., Qian C., Comeau K., Brenn T., Furthmayr H., Francke U. Mutant fibrillin-1 monomers lacking EGF-like domains disrupt microfibril assembly and cause severe marfan syndrome. Hum Mol Genet. 1996 Oct;5(10):1581–1587. doi: 10.1093/hmg/5.10.1581. [DOI] [PubMed] [Google Scholar]
  28. Maddox B. K., Sakai L. Y., Keene D. R., Glanville R. W. Connective tissue microfibrils. Isolation and characterization of three large pepsin-resistant domains of fibrillin. J Biol Chem. 1989 Dec 15;264(35):21381–21385. [PubMed] [Google Scholar]
  29. McLaughlin S. H., Bulleid N. J. Thiol-independent interaction of protein disulphide isomerase with type X collagen during intra-cellular folding and assembly. Biochem J. 1998 May 1;331(Pt 3):793–800. doi: 10.1042/bj3310793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Milewicz D. M., Grossfield J., Cao S. N., Kielty C., Covitz W., Jewett T. A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome. J Clin Invest. 1995 May;95(5):2373–2378. doi: 10.1172/JCI117930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Murphy G., Willenbrock F., Ward R. V., Cockett M. I., Eaton D., Docherty A. J. The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem J. 1992 May 1;283(Pt 3):637–641. doi: 10.1042/bj2830637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J. 1997 Nov 1;327(Pt 3):625–635. doi: 10.1042/bj3270625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nejjar I., Pieraggi M. T., Thiers J. C., Bouissou H. Age-related changes in the elastic tissue of the human thoracic aorta. Atherosclerosis. 1990 Jan;80(3):199–208. doi: 10.1016/0021-9150(90)90027-g. [DOI] [PubMed] [Google Scholar]
  34. Pereira L., Andrikopoulos K., Tian J., Lee S. Y., Keene D. R., Ono R., Reinhardt D. P., Sakai L. Y., Biery N. J., Bunton T. Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet. 1997 Oct;17(2):218–222. doi: 10.1038/ng1097-218. [DOI] [PubMed] [Google Scholar]
  35. Pereira L., D'Alessio M., Ramirez F., Lynch J. R., Sykes B., Pangilinan T., Bonadio J. Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet. 1993 Jul;2(7):961–968. doi: 10.1093/hmg/2.7.961. [DOI] [PubMed] [Google Scholar]
  36. Plantner J. J., Smine A., Quinn T. A. Matrix metalloproteinases and metalloproteinase inhibitors in human interphotoreceptor matrix and vitreous. Curr Eye Res. 1998 Feb;17(2):132–140. doi: 10.1076/ceyr.17.2.132.5610. [DOI] [PubMed] [Google Scholar]
  37. Qian R. Q., Glanville R. W. Alignment of fibrillin molecules in elastic microfibrils is defined by transglutaminase-derived cross-links. Biochemistry. 1997 Dec 16;36(50):15841–15847. doi: 10.1021/bi971036f. [DOI] [PubMed] [Google Scholar]
  38. Ramirez F. Fibrillln mutations in Marfan syndrome and related phenotypes. Curr Opin Genet Dev. 1996 Jun;6(3):309–315. doi: 10.1016/s0959-437x(96)80007-4. [DOI] [PubMed] [Google Scholar]
  39. Reber-Müller S., Spissinger T., Schuchert P., Spring J., Schmid V. An extracellular matrix protein of jellyfish homologous to mammalian fibrillins forms different fibrils depending on the life stage of the animal. Dev Biol. 1995 Jun;169(2):662–672. doi: 10.1006/dbio.1995.1177. [DOI] [PubMed] [Google Scholar]
  40. Reinhardt D. P., Keene D. R., Corson G. M., Pöschl E., Bächinger H. P., Gambee J. E., Sakai L. Y. Fibrillin-1: organization in microfibrils and structural properties. J Mol Biol. 1996 Apr 26;258(1):104–116. doi: 10.1006/jmbi.1996.0237. [DOI] [PubMed] [Google Scholar]
  41. Reinhardt D. P., Ono R. N., Sakai L. Y. Calcium stabilizes fibrillin-1 against proteolytic degradation. J Biol Chem. 1997 Jan 10;272(2):1231–1236. doi: 10.1074/jbc.272.2.1231. [DOI] [PubMed] [Google Scholar]
  42. Reinhardt D. P., Sasaki T., Dzamba B. J., Keene D. R., Chu M. L., Göhring W., Timpl R., Sakai L. Y. Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem. 1996 Aug 9;271(32):19489–19496. doi: 10.1074/jbc.271.32.19489. [DOI] [PubMed] [Google Scholar]
  43. Reynolds J. J., Meikle M. C. Mechanisms of connective tissue matrix destruction in periodontitis. Periodontol 2000. 1997 Jun;14:144–157. doi: 10.1111/j.1600-0757.1997.tb00195.x. [DOI] [PubMed] [Google Scholar]
  44. Sakai L. Y., Keene D. R., Engvall E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol. 1986 Dec;103(6 Pt 1):2499–2509. doi: 10.1083/jcb.103.6.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sherratt M. J., Holmes D. F., Shuttleworth C. A., Kielty C. M. Scanning transmission electron microscopy mass analysis of fibrillin-containing microfibrils from foetal elastic tissues. Int J Biochem Cell Biol. 1997 Aug-Sep;29(8-9):1063–1070. doi: 10.1016/s1357-2725(97)00028-9. [DOI] [PubMed] [Google Scholar]
  46. Sinha S., Nevett C., Shuttleworth C. A., Kielty C. M. Cellular and extracellular biology of the latent transforming growth factor-beta binding proteins. Matrix Biol. 1998 Dec;17(8-9):529–545. doi: 10.1016/s0945-053x(98)90106-8. [DOI] [PubMed] [Google Scholar]
  47. Thurmond F, Trotter J. Morphology and biomechanics of the microfibrillar network of sea cucumber dermis. J Exp Biol. 1996;199(Pt 8):1817–1828. doi: 10.1242/jeb.199.8.1817. [DOI] [PubMed] [Google Scholar]
  48. Wess T. J., Purslow P. P., Sherratt M. J., Ashworth J., Shuttleworth C. A., Kielty C. M. Calcium determines the supramolecular organization of fibrillin-rich microfibrils. J Cell Biol. 1998 May 4;141(3):829–837. doi: 10.1083/jcb.141.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wilson R., Allen A. J., Oliver J., Brookman J. L., High S., Bulleid N. J. The translocation, folding, assembly and redox-dependent degradation of secretory and membrane proteins in semi-permeabilized mammalian cells. Biochem J. 1995 May 1;307(Pt 3):679–687. doi: 10.1042/bj3070679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wright D. W., McDaniels C. N., Swasdison S., Accavitti M. A., Mayne P. M., Mayne R. Immunization with undenatured bovine zonular fibrils results in monoclonal antibodies to fibrillin. Matrix Biol. 1994 Jan;14(1):41–49. doi: 10.1016/0945-053x(94)90028-0. [DOI] [PubMed] [Google Scholar]
  51. ZUGIBE F. T., BROWN K. D. Histochemical studies in atherogenesis: human aortas. Circ Res. 1960 Jan;8:287–295. doi: 10.1161/01.res.8.1.287. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES