Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 15;340(Pt 1):193–199.

Interactions between a single immunoglobulin-binding domain of protein L from Peptostreptococcus magnus and a human kappa light chain.

J A Beckingham 1, S P Bottomley 1, R Hinton 1, B J Sutton 1, M G Gore 1
PMCID: PMC1220237  PMID: 10229674

Abstract

The placement of a tryptophan residue into a single Ig-binding-domain of protein L from Peptostreptococcus magnus has been used to examine the binding interactions between the binding domain and kappa light chains (kappa-chains). The fluorescence intensity of the mutant domain increases on the formation of a complex with kappa-chains. This has been used to determine the Kd of the complex under a range of conditions by using both pre-equilibrium and equilibrium methods. The Kd values determined for the complex with kappa-chains at a number of different pH values are very close to those obtained with the wild-type domain, indicating that the mutation has not substantially affected its binding properties. Examination of the reaction between the mutant domain and kappa-chains by stopped-flow fluorescence shows that complex formation takes place by two discrete, sequential processes. A fast bimolecular reaction, with a rate constant of 8.3x10(5) M-1. s-1 (at pH8.0 and 25 degrees C), is followed by a slow unimolecular process with a rate (1.45 s-1) that is independent of the concentration of the reactants. This suggests that a conformational change occurs after the initial encounter complex is formed. The dissociation of the complex at equilibrium occurs in a single process of rate 0.095 s-1 at pH8.0 and 25 degrees C. Stopped-flow CD studies show that a slow decrease in ellipticity at 275 nm occurs with a rate of 1.3 s-1 when wild-type protein binds to kappa-chains, suggesting that the conformational transition might involve a change in environment around one or more tyrosine residues.

Full Text

The Full Text of this article is available as a PDF (171.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashby B., Wootton J. C., Fincham J. R. Slow conformational changes of a Neurospora glutamate dehydrogenase studied by protein fluorescence. Biochem J. 1974 Nov;143(2):317–329. doi: 10.1042/bj1430317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Björck L., Kronvall G. Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. J Immunol. 1984 Aug;133(2):969–974. [PubMed] [Google Scholar]
  3. Bottomley S. P., Beckingham J. A., Murphy J. P., Atkinson M., Atkinson T., Hinton R. J., Gore M. G. Cloning, expression and purification of Ppl-1, a kappa-chain binding protein, based upon protein L from Peptostreptococcus magnus. Bioseparation. 1995;5(6):359–367. [PubMed] [Google Scholar]
  4. Bottomley S. P., Popplewell A. G., Scawen M., Wan T., Sutton B. J., Gore M. G. The stability and unfolding of an IgG binding protein based upon the B domain of protein A from Staphylococcus aureus probed by tryptophan substitution and fluorescence spectroscopy. Protein Eng. 1994 Dec;7(12):1463–1470. doi: 10.1093/protein/7.12.1463. [DOI] [PubMed] [Google Scholar]
  5. Chaiyen P., Brissette P., Ballou D. P., Massey V. Thermodynamics and reduction kinetics properties of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase. Biochemistry. 1997 Mar 4;36(9):2612–2621. doi: 10.1021/bi962325r. [DOI] [PubMed] [Google Scholar]
  6. Derrick J. P., Wigley D. B. Crystal structure of a streptococcal protein G domain bound to an Fab fragment. Nature. 1992 Oct 22;359(6397):752–754. doi: 10.1038/359752a0. [DOI] [PubMed] [Google Scholar]
  7. Dorrington K. J., Smith B. R. Conformational changes accompanying the dissociation and association of immunoglobulin-G subunits. Biochim Biophys Acta. 1972 Mar 15;263(1):70–81. doi: 10.1016/0005-2795(72)90160-2. [DOI] [PubMed] [Google Scholar]
  8. Edmundson A. B., Ely K. R., Abola E. E. Conformational flexibility in immunoglobulins. Contemp Top Mol Immunol. 1978;7:95–118. doi: 10.1007/978-1-4757-0779-3_3. [DOI] [PubMed] [Google Scholar]
  9. Enokizono J., Wikström M., Sjöbring U., Björck L., Forsén S., Arata Y., Kato K., Shimada I. NMR analysis of the interaction between protein L and Ig light chains. J Mol Biol. 1997 Jul 4;270(1):8–13. doi: 10.1006/jmbi.1997.1090. [DOI] [PubMed] [Google Scholar]
  10. Ghose A. C. Conformational studies on the constant region halves of heavy and light chains of human immunoglobulin G. Biochim Biophys Acta. 1972 Sep 29;278(2):337–343. doi: 10.1016/0005-2795(72)90238-3. [DOI] [PubMed] [Google Scholar]
  11. Gore M. G., Greasley P., McAllister G., Ragan C. I. Mammalian inositol monophosphatase: the identification of residues important for the binding of Mg2+ and Li+ ions using fluorescence spectroscopy and site-directed mutagenesis. Biochem J. 1993 Dec 15;296(Pt 3):811–815. doi: 10.1042/bj2960811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goward C. R., Scawen M. D., Murphy J. P., Atkinson T. Molecular evolution of bacterial cell-surface proteins. Trends Biochem Sci. 1993 Apr;18(4):136–140. doi: 10.1016/0968-0004(93)90021-e. [DOI] [PubMed] [Google Scholar]
  13. Ikeda K., Hamaguchi K., Migita S. Circular dichroism of Bence-Jones proteins and immunoglobulins G. J Biochem. 1968 May;63(5):654–660. doi: 10.1093/oxfordjournals.jbchem.a128825. [DOI] [PubMed] [Google Scholar]
  14. Kastern W., Sjöbring U., Björck L. Structure of peptostreptococcal protein L and identification of a repeated immunoglobulin light chain-binding domain. J Biol Chem. 1992 Jun 25;267(18):12820–12825. [PubMed] [Google Scholar]
  15. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Langone J. J. Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumonococci. Adv Immunol. 1982;32:157–252. [PubMed] [Google Scholar]
  17. Patella V., Casolaro V., Björck L., Marone G. Protein L. A bacterial Ig-binding protein that activates human basophils and mast cells. J Immunol. 1990 Nov 1;145(9):3054–3061. [PubMed] [Google Scholar]
  18. Sasso E. H., Silverman G. J., Mannik M. Human IgA and IgG F(ab')2 that bind to staphylococcal protein A belong to the VHIII subgroup. J Immunol. 1991 Sep 15;147(6):1877–1883. [PubMed] [Google Scholar]
  19. Sjöquist J., Movitz J., Johansson I. B., Hjelm H. Localization of protein A in the bacteria. Eur J Biochem. 1972 Oct 17;30(1):190–194. doi: 10.1111/j.1432-1033.1972.tb02086.x. [DOI] [PubMed] [Google Scholar]
  20. Thumser A. E., Wilton D. C. Characterization of binding and structural properties of rat liver fatty-acid-binding protein using tryptophan mutants. Biochem J. 1994 Jun 15;300(Pt 3):827–833. doi: 10.1042/bj3000827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wikström M., Drakenberg T., Forsén S., Sjöbring U., Björck L. Three-dimensional solution structure of an immunoglobulin light chain-binding domain of protein L. Comparison with the IgG-binding domains of protein G. Biochemistry. 1994 Nov 29;33(47):14011–14017. doi: 10.1021/bi00251a008. [DOI] [PubMed] [Google Scholar]
  22. Wikström M., Forsén S., Drakenberg T. Backbone dynamics of a domain of protein L which binds to immunoglobulin light chains. Eur J Biochem. 1996 Feb 1;235(3):543–548. doi: 10.1111/j.1432-1033.1996.00543.x. [DOI] [PubMed] [Google Scholar]
  23. Wikström M., Sjöbring U., Drakenberg T., Forsén S., Björck L. Mapping of the immunoglobulin light chain-binding site of protein L. J Mol Biol. 1995 Jul 7;250(2):128–133. doi: 10.1006/jmbi.1995.0364. [DOI] [PubMed] [Google Scholar]
  24. Wikström M., Sjöbring U., Kastern W., Björck L., Drakenberg T., Forsén S. Proton nuclear magnetic resonance sequential assignments and secondary structure of an immunoglobulin light chain-binding domain of protein L. Biochemistry. 1993 Apr 6;32(13):3381–3386. doi: 10.1021/bi00064a023. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES