Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 15;340(Pt 1):227–235.

Inhibition of ATPase, GTPase and adenylate kinase activities of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator by genistein.

C Randak 1, E A Auerswald 1, I Assfalg-Machleidt 1, W W Reenstra 1, W Machleidt 1
PMCID: PMC1220242  PMID: 10229679

Abstract

In the presence of ATP, genistein, like the ATP analogue adenosine 5'-[beta,gamma-imido]triphosphate (pp[NH]pA), increases cystic fibrosis transmembrane conductance regulator (CFTR) chloride currents by prolonging open times. As pp[NH]pA is thought to increase CFTR currents by interfering with ATP hydrolysis at the second nucleotide-binding fold (NBF-2), the present study was undertaken to investigate the effects of genistein on a fusion protein comprising maltose-binding protein (MBP) and NBF-2 (MBP-NBF-2). MBP-NBF-2 exhibited ATPase, GTPase and adenylate kinase activities that were inhibited by genistein in a partial non-competitive manner with respect to ATP or GTP. Ki values for competitive and uncompetitive inhibition were respectively 20 microM and 63 microM for ATPase, 15 microM and 54 microM for GTPase, and 46 microM and 142 microM for adenylate kinase. For ATPase activity, genistein reduced Vmax by 29% and Vmax/Km by 77%. Additional evidence for complex-formation between genistein and MBP-NBF-2 was obtained by the detection of genistein-dependent alterations in the CD spectrum of MBP-NBF-2 that were consistent with the formation of a higher-ordered state. Addition of MBP-NBF-2 increased the fluorescence intensity of genistein, consistent with a change to a less polar environment. pp[NH]pA partially eliminated this enhanced fluorescence of genistein. These observations provide the first direct biochemical evidence that genistein interacts with CFTR, thus inhibiting NBF-2 activity, and suggest a similar mechanism for genistein-dependent stimulation of CFTR chloride currents.

Full Text

The Full Text of this article is available as a PDF (191.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed] [Google Scholar]
  2. Anderson M. P., Berger H. A., Rich D. P., Gregory R. J., Smith A. E., Welsh M. J. Nucleoside triphosphates are required to open the CFTR chloride channel. Cell. 1991 Nov 15;67(4):775–784. doi: 10.1016/0092-8674(91)90072-7. [DOI] [PubMed] [Google Scholar]
  3. Anderson M. P., Welsh M. J. Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains. Science. 1992 Sep 18;257(5077):1701–1704. doi: 10.1126/science.1382316. [DOI] [PubMed] [Google Scholar]
  4. Bilderback T., Fulmer T., Mantulin W. W., Glaser M. Substrate binding causes movement in the ATP binding domain of Escherichia coli adenylate kinase. Biochemistry. 1996 May 14;35(19):6100–6106. doi: 10.1021/bi951833i. [DOI] [PubMed] [Google Scholar]
  5. Carson M. R., Travis S. M., Welsh M. J. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. J Biol Chem. 1995 Jan 27;270(4):1711–1717. doi: 10.1074/jbc.270.4.1711. [DOI] [PubMed] [Google Scholar]
  6. Carson M. R., Welsh M. J. Structural and functional similarities between the nucleotide-binding domains of CFTR and GTP-binding proteins. Biophys J. 1995 Dec;69(6):2443–2448. doi: 10.1016/S0006-3495(95)80113-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheng S. H., Rich D. P., Marshall J., Gregory R. J., Welsh M. J., Smith A. E. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell. 1991 Sep 6;66(5):1027–1036. doi: 10.1016/0092-8674(91)90446-6. [DOI] [PubMed] [Google Scholar]
  8. Cochet C., Chambaz E. M. Catalytic properties of a purified phosphatidylinositol-4-phosphate kinase from rat brain. Biochem J. 1986 Jul 1;237(1):25–31. doi: 10.1042/bj2370025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cochet C., Feige J. J., Pirollet F., Keramidas M., Chambaz E. M. Selective inhibition of a cyclic nucleotide independent protein kinase (G type casein kinase) by quercetin and related polyphenols. Biochem Pharmacol. 1982 Apr 1;31(7):1357–1361. doi: 10.1016/0006-2952(82)90028-4. [DOI] [PubMed] [Google Scholar]
  10. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. French P. J., Bijman J., Bot A. G., Boomaars W. E., Scholte B. J., de Jonge H. R. Genistein activates CFTR Cl- channels via a tyrosine kinase- and protein phosphatase-independent mechanism. Am J Physiol. 1997 Aug;273(2 Pt 1):C747–C753. doi: 10.1152/ajpcell.1997.273.2.C747. [DOI] [PubMed] [Google Scholar]
  12. Goody R. S., Frech M., Wittinghofer A. Affinity of guanine nucleotide binding proteins for their ligands: facts and artefacts. Trends Biochem Sci. 1991 Sep;16(9):327–328. doi: 10.1016/0968-0004(91)90134-h. [DOI] [PubMed] [Google Scholar]
  13. Grisolia S., Rubio V., Feijoo B., Mendelson J. Inhibition of lactic dehydrogenase and of pyruvate kinase by low concentrations of quercetin. Physiol Chem Phys. 1975;7(5):473–475. [PubMed] [Google Scholar]
  14. Horn F., Gschwendt M., Marks F. Partial purification and characterization of the calcium-dependent and phospholipid-dependent protein kinase C from chick oviduct. Eur J Biochem. 1985 May 2;148(3):533–538. doi: 10.1111/j.1432-1033.1985.tb08872.x. [DOI] [PubMed] [Google Scholar]
  15. Huang J., Nasr M., Kim Y., Matthews H. R. Genistein inhibits protein histidine kinase. J Biol Chem. 1992 Aug 5;267(22):15511–15515. [PubMed] [Google Scholar]
  16. Hwang T. C., Nagel G., Nairn A. C., Gadsby D. C. Regulation of the gating of cystic fibrosis transmembrane conductance regulator C1 channels by phosphorylation and ATP hydrolysis. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4698–4702. doi: 10.1073/pnas.91.11.4698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hwang T. C., Wang F., Yang I. C., Reenstra W. W. Genistein potentiates wild-type and delta F508-CFTR channel activity. Am J Physiol. 1997 Sep;273(3 Pt 1):C988–C998. doi: 10.1152/ajpcell.1997.273.3.C988. [DOI] [PubMed] [Google Scholar]
  18. Hyde S. C., Emsley P., Hartshorn M. J., Mimmack M. M., Gileadi U., Pearce S. R., Gallagher M. P., Gill D. R., Hubbard R. E., Higgins C. F. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature. 1990 Jul 26;346(6282):362–365. doi: 10.1038/346362a0. [DOI] [PubMed] [Google Scholar]
  19. Illek B., Fischer H., Machen T. E. Alternate stimulation of apical CFTR by genistein in epithelia. Am J Physiol. 1996 Jan;270(1 Pt 1):C265–C275. doi: 10.1152/ajpcell.1996.270.1.C265. [DOI] [PubMed] [Google Scholar]
  20. Illek B., Fischer H., Santos G. F., Widdicombe J. H., Machen T. E., Reenstra W. W. cAMP-independent activation of CFTR Cl channels by the tyrosine kinase inhibitor genistein. Am J Physiol. 1995 Apr;268(4 Pt 1):C886–C893. doi: 10.1152/ajpcell.1995.268.4.C886. [DOI] [PubMed] [Google Scholar]
  21. Illek B., Yankaskas J. R., Machen T. E. cAMP and genistein stimulate HCO3- conductance through CFTR in human airway epithelia. Am J Physiol. 1997 Apr;272(4 Pt 1):L752–L761. doi: 10.1152/ajplung.1997.272.4.L752. [DOI] [PubMed] [Google Scholar]
  22. Ito Y., Tomasselli A. G., Noda L. H. ATP:AMP phosphotransferase from baker's yeast. Purification and properties. Eur J Biochem. 1980 Mar;105(1):85–92. doi: 10.1111/j.1432-1033.1980.tb04477.x. [DOI] [PubMed] [Google Scholar]
  23. Ko Y. H., Pedersen P. L. The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator can function as an active ATPase. J Biol Chem. 1995 Sep 22;270(38):22093–22096. doi: 10.1074/jbc.270.38.22093. [DOI] [PubMed] [Google Scholar]
  24. Ko Y. H., Thomas P. J., Delannoy M. R., Pedersen P. L. The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and delta F508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein. J Biol Chem. 1993 Nov 15;268(32):24330–24338. [PubMed] [Google Scholar]
  25. Lehrich R. W., Forrest J. N., Jr Tyrosine phosphorylation is a novel pathway for regulation of chloride secretion in shark rectal gland. Am J Physiol. 1995 Oct;269(4 Pt 2):F594–F600. doi: 10.1152/ajprenal.1995.269.4.F594. [DOI] [PubMed] [Google Scholar]
  26. Manavalan P., Dearborn D. G., McPherson J. M., Smith A. E. Sequence homologies between nucleotide binding regions of CFTR and G-proteins suggest structural and functional similarities. FEBS Lett. 1995 Jun 12;366(2-3):87–91. doi: 10.1016/0014-5793(95)00463-j. [DOI] [PubMed] [Google Scholar]
  27. McKenna E., Smith J. S., Coll K. E., Mazack E. K., Mayer E. J., Antanavage J., Wiedmann R. T., Johnson R. G., Jr Dissociation of phospholamban regulation of cardiac sarcoplasmic reticulum Ca2+ATPase by quercetin. J Biol Chem. 1996 Oct 4;271(40):24517–24525. doi: 10.1074/jbc.271.40.24517. [DOI] [PubMed] [Google Scholar]
  28. Müller-Dieckmann H. J., Schulz G. E. Substrate specificity and assembly of the catalytic center derived from two structures of ligated uridylate kinase. J Mol Biol. 1995 Mar 3;246(4):522–530. doi: 10.1006/jmbi.1994.0104. [DOI] [PubMed] [Google Scholar]
  29. Müller C. W., Schulz G. E. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. J Mol Biol. 1992 Mar 5;224(1):159–177. doi: 10.1016/0022-2836(92)90582-5. [DOI] [PubMed] [Google Scholar]
  30. Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
  31. Quinton P. M., Reddy M. M. Control of CFTR chloride conductance by ATP levels through non-hydrolytic binding. Nature. 1992 Nov 5;360(6399):79–81. doi: 10.1038/360079a0. [DOI] [PubMed] [Google Scholar]
  32. Ramjeesingh M., Li C., Garami E., Huan L. J., Hewryk M., Wang Y., Galley K., Bear C. E. A novel procedure for the efficient purification of the cystic fibrosis transmembrane conductance regulator (CFTR). Biochem J. 1997 Oct 1;327(Pt 1):17–21. doi: 10.1042/bj3270017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Randak C., Neth P., Auerswald E. A., Assfalg-Machleidt I., Roscher A. A., Hadorn H. B., Machleidt W. A recombinant polypeptide model of the second predicted nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator is a GTP-binding protein. FEBS Lett. 1996 Nov 25;398(1):97–100. doi: 10.1016/s0014-5793(96)01217-3. [DOI] [PubMed] [Google Scholar]
  34. Randak C., Neth P., Auerswald E. A., Eckerskorn C., Assfalg-Machleidt I., Machleidt W. A recombinant polypeptide model of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator functions as an active ATPase, GTPase and adenylate kinase. FEBS Lett. 1997 Jun 30;410(2-3):180–186. doi: 10.1016/s0014-5793(97)00574-7. [DOI] [PubMed] [Google Scholar]
  35. Randak C., Roscher A. A., Hadorn H. B., Assfalg-Machleidt I., Auerswald E. A., Machleidt W. Expression and functional properties of the second predicted nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator fused to glutathione-S-transferase. FEBS Lett. 1995 Apr 17;363(1-2):189–194. doi: 10.1016/0014-5793(95)00314-y. [DOI] [PubMed] [Google Scholar]
  36. Reenstra W. W., Yurko-Mauro K., Dam A., Raman S., Shorten S. CFTR chloride channel activation by genistein: the role of serine/threonine protein phosphatases. Am J Physiol. 1996 Aug;271(2 Pt 1):C650–C657. doi: 10.1152/ajpcell.1996.271.2.C650. [DOI] [PubMed] [Google Scholar]
  37. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  38. Schulz G. E., Müller C. W., Diederichs K. Induced-fit movements in adenylate kinases. J Mol Biol. 1990 Jun 20;213(4):627–630. doi: 10.1016/S0022-2836(05)80250-5. [DOI] [PubMed] [Google Scholar]
  39. Shuba L. M., Asai T., Pelzer S., McDonald T. F. Activation of cardiac chloride conductance by the tyrosine kinase inhibitor, genistein. Br J Pharmacol. 1996 Sep;119(2):335–345. doi: 10.1111/j.1476-5381.1996.tb15991.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sicheri F., Moarefi I., Kuriyan J. Crystal structure of the Src family tyrosine kinase Hck. Nature. 1997 Feb 13;385(6617):602–609. doi: 10.1038/385602a0. [DOI] [PubMed] [Google Scholar]
  41. Smit L. S., Wilkinson D. J., Mansoura M. K., Collins F. S., Dawson D. C. Functional roles of the nucleotide-binding folds in the activation of the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9963–9967. doi: 10.1073/pnas.90.21.9963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tomasselli A. G., Noda L. H. Mitochondrial ATP:AMP phosphotransferase from beef heart: purification and properties. Eur J Biochem. 1980 Feb;103(3):481–491. doi: 10.1111/j.1432-1033.1980.tb05972.x. [DOI] [PubMed] [Google Scholar]
  43. Wang F., Zeltwanger S., Yang I. C., Nairn A. C., Hwang T. C. Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects. J Gen Physiol. 1998 Mar;111(3):477–490. doi: 10.1085/jgp.111.3.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Weinreich F., Wood P. G., Riordan J. R., Nagel G. Direct action of genistein on CFTR. Pflugers Arch. 1997 Aug;434(4):484–491. doi: 10.1007/s004240050424. [DOI] [PubMed] [Google Scholar]
  45. Yang I. C., Cheng T. H., Wang F., Price E. M., Hwang T. C. Modulation of CFTR chloride channels by calyculin A and genistein. Am J Physiol. 1997 Jan;272(1 Pt 1):C142–C155. doi: 10.1152/ajpcell.1997.272.1.C142. [DOI] [PubMed] [Google Scholar]
  46. Yike I., Ye J., Zhang Y., Manavalan P., Gerken T. A., Dearborn D. G. A recombinant peptide model of the first nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator: comparison of wild-type and delta F508 mutant forms. Protein Sci. 1996 Jan;5(1):89–97. doi: 10.1002/pro.5560050111. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES