Abstract
Molecular cloning of cDNAs encoding moricin, a novel antibacterial peptide from the silkworm (Bombyx mori), was performed using a fat-body cDNA library. A reverse-transcription PCR product encoding a partial nucleotide sequence of moricin was used as a probe. Nucleotide sequencing of four positive clones revealed two types of moricin cDNAs designated moricin 1 and 2. cDNAs for moricin 1 and 2 shared 97.2% identity in their nucleotide sequences. Although one amino acid residue (Phe6) of moricin 1 in the putative signal peptide was replaced with Lys6 in moricin 2, amino acid sequences of their mature portions were identical. Moricin gene expression in B. mori larvae injected with Escherichia coli was observed in fat-bodies, haemocytes and the Malpighian tubule, but not in other tissues like the midgut and silk glands. Accumulation of moricin gene transcripts induced by E. coli reached a maximum level 8 h after injection and persisted up to 48 h. It was confirmed that lipopolysaccharide (LPS) and lipid A, which are cell-wall components of E. coli, triggered moricin gene expression. Comparison of gene expression between moricin 1 and 2 by PCR using specific primers indicated that moricin 2 gene was more strongly expressed than moricin 1 gene. A genomic clone encoding moricin 2 was screened from a B. mori genomic library using a moricin cDNA as a probe. Regulatory motifs for gene expression such as nuclear-factor-kappaB-binding-site-like sequence (kappaB site) and nuclear-factor-interleukin-6-binding-site-like sequence (NF-IL-6 site) were found in the 5'-upstream regulatory region. An electrophoretic-mobility-shift assay revealed that there are bacterial LPS-inducible nuclear proteins that can bind to the kappaB site and other sites in the regulatory region.
Full Text
The Full Text of this article is available as a PDF (250.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boman H. G. Antibacterial peptides: key components needed in immunity. Cell. 1991 Apr 19;65(2):205–207. doi: 10.1016/0092-8674(91)90154-q. [DOI] [PubMed] [Google Scholar]
- Boman H. G., Hultmark D. Cell-free immunity in insects. Annu Rev Microbiol. 1987;41:103–126. doi: 10.1146/annurev.mi.41.100187.000535. [DOI] [PubMed] [Google Scholar]
- Brey P. T., Lee W. J., Yamakawa M., Koizumi Y., Perrot S., François M., Ashida M. Role of the integument in insect immunity: epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6275–6279. doi: 10.1073/pnas.90.13.6275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chowdhury S., Taniai K., Hara S., Kadono-Okuda K., Kato Y., Yamamoto M., Xu J., Choi S. K., Debnath N. C., Choi H. K. cDNA cloning and gene expression of lebocin, a novel member of antibacterial peptides from the silkworm, Bombyx mori. Biochem Biophys Res Commun. 1995 Sep 5;214(1):271–278. doi: 10.1006/bbrc.1995.2284. [DOI] [PubMed] [Google Scholar]
- Devine J. M., Tsang A. S., Williams J. G. Differential expression of the members of the discoidin I multigene family during growth and development of Dictyostelium discoideum. Cell. 1982 Apr;28(4):793–800. doi: 10.1016/0092-8674(82)90058-7. [DOI] [PubMed] [Google Scholar]
- Ferrandon D., Jung A. C., Criqui M., Lemaitre B., Uttenweiler-Joseph S., Michaut L., Reichhart J., Hoffmann J. A. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 1998 Aug 10;17(5):1217–1227. doi: 10.1093/emboj/17.5.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujii T., Sakurai H., Izumi S., Tomino S. Structure of the gene for the arylphorin-type storage protein SP 2 of Bombyx mori. J Biol Chem. 1989 Jul 5;264(19):11020–11025. [PubMed] [Google Scholar]
- Furukawa S., Taniai K., Ishibashi J., Hara S., Shono T., Yamakawa M. A novel member of lebocin gene family from the silkworm, Bombyx mori. Biochem Biophys Res Commun. 1997 Sep 29;238(3):769–774. doi: 10.1006/bbrc.1997.7386. [DOI] [PubMed] [Google Scholar]
- Hara S., Yamakawa M. Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J Biol Chem. 1995 Dec 15;270(50):29923–29927. doi: 10.1074/jbc.270.50.29923. [DOI] [PubMed] [Google Scholar]
- Hara S., Yamakawa M. Production in Escherichia of moricin, a novel type antibacterial peptide from the silkworm, Bombyx mori. Biochem Biophys Res Commun. 1996 Mar 27;220(3):664–669. doi: 10.1006/bbrc.1996.0461. [DOI] [PubMed] [Google Scholar]
- Hergannan J. A., Rechhart J. V. Drosophila immunity. Trends Cell Biol. 1997 Aug;7(8):309–316. doi: 10.1016/S0962-8924(97)01087-8. [DOI] [PubMed] [Google Scholar]
- Hultmark D. Immune reactions in Drosophila and other insects: a model for innate immunity. Trends Genet. 1993 May;9(5):178–183. doi: 10.1016/0168-9525(93)90165-e. [DOI] [PubMed] [Google Scholar]
- Kadalayil L., Petersen U. M., Engström Y. Adjacent GATA and kappa B-like motifs regulate the expression of a Drosophila immune gene. Nucleic Acids Res. 1997 Mar 15;25(6):1233–1239. doi: 10.1093/nar/25.6.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato Y., Taniai K., Hirochika H., Yamakawa M. Expression and characterization of cDNAs for cecropin B, an antibacterial protein of the silkworm, Bombyx mori. Insect Biochem Mol Biol. 1993 Mar;23(2):285–290. doi: 10.1016/0965-1748(93)90009-h. [DOI] [PubMed] [Google Scholar]
- Kimbrell D. A. Insect antibacterial proteins: not just for insects and against bacteria. Bioessays. 1991 Dec;13(12):657–663. doi: 10.1002/bies.950131207. [DOI] [PubMed] [Google Scholar]
- Lee W. J., Brey P. T. Isolation and identification of cecropin antibacterial peptides from the extracellular matrix of the insect integument. Anal Biochem. 1994 Mar;217(2):231–235. doi: 10.1006/abio.1994.1113. [DOI] [PubMed] [Google Scholar]
- Mine E., Sakurai H., Izumi S., Tomino S. The fat body cell-free system for tissue-specific transcription of plasma protein gene of Bombyx mori. Nucleic Acids Res. 1995 Jul 25;23(14):2648–2653. doi: 10.1093/nar/23.14.2648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padgett R. A., Grabowski P. J., Konarska M. M., Seiler S., Sharp P. A. Splicing of messenger RNA precursors. Annu Rev Biochem. 1986;55:1119–1150. doi: 10.1146/annurev.bi.55.070186.005351. [DOI] [PubMed] [Google Scholar]
- Sugiyama M., Kuniyoshi H., Kotani E., Taniai K., Kadono-Okuda K., Kato Y., Yamamoto M., Shimabukuro M., Chowdhury S., Xu J. Characterization of a Bombyx mori cDNA encoding a novel member of the attacin family of insect antibacterial proteins. Insect Biochem Mol Biol. 1995 Mar;25(3):385–392. doi: 10.1016/0965-1748(94)00080-2. [DOI] [PubMed] [Google Scholar]
- Taniai K., Furukawa S., Shono T., Yamakawa M. Elicitors triggering the simultaneous gene expression of antibacterial proteins of the silkworm, Bombyx mori. Biochem Biophys Res Commun. 1996 Sep 24;226(3):783–790. doi: 10.1006/bbrc.1996.1429. [DOI] [PubMed] [Google Scholar]
- Taniai K., Kadono-Okuda K., Kato Y., Yamamoto M., Shimabukuro M., Chowdhury S., Xu J., Kotani E., Tomino S., Yamakawa M. Structure of two cecropin B-encoding genes and bacteria-inducible DNA-binding proteins which bind to the 5'-upstream regulatory region in the silkworm, Bombyx mori. Gene. 1995 Oct 3;163(2):215–219. doi: 10.1016/0378-1119(95)00408-x. [DOI] [PubMed] [Google Scholar]
- Taniai K., Kato Y., Hirochika H., Yamakawa M. Isolation and nucleotide sequence of cecropin B cDNA clones from the silkworm, Bombyx mori. Biochim Biophys Acta. 1992 Sep 24;1132(2):203–206. doi: 10.1016/0167-4781(92)90013-p. [DOI] [PubMed] [Google Scholar]
- Wicker C., Reichhart J. M., Hoffmann D., Hultmark D., Samakovlis C., Hoffmann J. A. Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J Biol Chem. 1990 Dec 25;265(36):22493–22498. [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]