Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 15;340(Pt 1):345–351.

Oxidative refolding of recombinant prochymosin.

C Wei 1, B Tang 1, Y Zhang 1, K Yang 1
PMCID: PMC1220254  PMID: 10229691

Abstract

The disulphide-coupled refolding of recombinant prochymosin from Escherichia coli inclusion bodies was investigated. Prochymosin solubilized from inclusion bodies is endowed with free thiol groups and disulphide bonds. This partially reduced form undergoes renaturation more efficiently than the fully reduced form, suggesting that some native structural elements existing in inclusion bodies and remaining after denaturation function as nuclei to initiate correct refolding. This assumption is supported by the finding that in the solubilized prochymosin molecule the cysteine residues located in the N-terminal domain of the protein are not incorrectly paired with the other cysteines in the C-terminal domain. Addition of GSH/GSSG into the refolding system facilitates disulphide rearrangement and thus enhances renaturation, especially for the fully reduced prochymosin. Based on the results described in this and previous papers [Tang, Zhang and Yang (1994) Biochem. J. 301, 17-20], a model to depict the refolding process of prochymosin is proposed. Briefly, the refolding process of prochymosin consists of two stages: the formation and rearrangement of disulphide bonds occurs at the first stage in a pH11 buffer, whereas the formation and adjustment of tertiary structure leading to the native conformation takes place at the second stage at pH8. The pH11 conditions help polypeptides to refold in such a way as to favour the formation of native disulphide bonds. Disulphide rearrangement, the rate-limiting step during refolding, can be achieved by thiol/disulphide exchange initiated by free thiol groups present in the prochymosin polypeptide, GSH/GSSG or protein disulphide isomerase.

Full Text

The Full Text of this article is available as a PDF (153.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. L., Wetlaufer D. B. A new method for disulfide analysis of peptides. Anal Biochem. 1975 Aug;67(2):493–502. doi: 10.1016/0003-2697(75)90323-1. [DOI] [PubMed] [Google Scholar]
  2. Anfinsen C. B., Scheraga H. A. Experimental and theoretical aspects of protein folding. Adv Protein Chem. 1975;29:205–300. doi: 10.1016/s0065-3233(08)60413-1. [DOI] [PubMed] [Google Scholar]
  3. Anfinsen C. B. The formation of the tertiary structure of proteins. Harvey Lect. 1967;61:95–116. [PubMed] [Google Scholar]
  4. Creighton T. E., Zapun A., Darby N. J. Mechanisms and catalysts of disulfide bond formation in proteins. Trends Biotechnol. 1995 Jan;13(1):18–23. doi: 10.1016/s0167-7799(00)88896-4. [DOI] [PubMed] [Google Scholar]
  5. Dill K. A., Shortle D. Denatured states of proteins. Annu Rev Biochem. 1991;60:795–825. doi: 10.1146/annurev.bi.60.070191.004051. [DOI] [PubMed] [Google Scholar]
  6. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  7. Emtage J. S., Angal S., Doel M. T., Harris T. J., Jenkins B., Lilley G., Lowe P. A. Synthesis of calf prochymosin (prorennin) in Escherichia coli. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3671–3675. doi: 10.1073/pnas.80.12.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fullmer C. S. Identification of cysteine-containing peptides in protein digests by high-performance liquid chromatography. Anal Biochem. 1984 Nov 1;142(2):336–339. doi: 10.1016/0003-2697(84)90473-1. [DOI] [PubMed] [Google Scholar]
  9. Hober S., Forsberg G., Palm G., Hartmanis M., Nilsson B. Disulfide exchange folding of insulin-like growth factor I. Biochemistry. 1992 Feb 18;31(6):1749–1756. doi: 10.1021/bi00121a024. [DOI] [PubMed] [Google Scholar]
  10. Huang K., Zhang Z., Liu N., Zhang Y., Zhang G., Yang K. Functional implication of disulfide bond, Cys250 -Cys283, in bovine chymosin. Biochem Biophys Res Commun. 1992 Sep 16;187(2):692–696. doi: 10.1016/0006-291x(92)91250-t. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Oberg K., Chrunyk B. A., Wetzel R., Fink A. L. Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR. Biochemistry. 1994 Mar 8;33(9):2628–2634. doi: 10.1021/bi00175a035. [DOI] [PubMed] [Google Scholar]
  13. Pedersen V. B., Christensen K. A., Foltmann B. Investigations on the activation of bovine prochymosin. Eur J Biochem. 1979 Mar;94(2):573–580. doi: 10.1111/j.1432-1033.1979.tb12927.x. [DOI] [PubMed] [Google Scholar]
  14. Przybycien T. M., Dunn J. P., Valax P., Georgiou G. Secondary structure characterization of beta-lactamase inclusion bodies. Protein Eng. 1994 Jan;7(1):131–136. doi: 10.1093/protein/7.1.131. [DOI] [PubMed] [Google Scholar]
  15. Sugrue R., Marston F. A., Lowe P. A., Freedman R. B. Denaturation studies on natural and recombinant bovine prochymosin (prorennin). Biochem J. 1990 Oct 15;271(2):541–547. doi: 10.1042/bj2710541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Swank R. T., Munkres K. D. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem. 1971 Feb;39(2):462–477. doi: 10.1016/0003-2697(71)90436-2. [DOI] [PubMed] [Google Scholar]
  17. Tang B., Zhang S., Yang K. Assisted refolding of recombinant prochymosin with the aid of protein disulphide isomerase. Biochem J. 1994 Jul 1;301(Pt 1):17–20. doi: 10.1042/bj3010017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tsukagoshi N., Ando Y., Tomita Y., Uchida R., Takemura T., Sasaki T., Yamagata H., Udaka S., Ichihara Y., Takahashi K. Nucleotide sequence and expression in Escherichia coli of cDNA of swine pepsinogen: involvement of the amino-terminal portion of the activation peptide segment in restoration of the functional protein. Gene. 1988 May 30;65(2):285–292. doi: 10.1016/0378-1119(88)90465-9. [DOI] [PubMed] [Google Scholar]
  19. Zhang Y., Li H., Wu H., Don Y., Liu N., Yang K. Functional implications of disulfide bond, Cys45-Cys50, in recombinant prochymosin. Biochim Biophys Acta. 1997 Dec 5;1343(2):278–286. doi: 10.1016/s0167-4838(97)00113-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES