Abstract
The role of plasmalogen phospholipids for copper-induced lipid oxidation was evaluated. Using 1H-NMR we observed that the copper (CuSO4)-promoted oxidative degradation of polyunsaturated fatty acids in micellar solution was dose-dependently attenuated by the plasmalogen lysoplasmenylethanolamine from bovine brain (lysoBP-PtdEtn). This was due to a direct interaction of copper ions with the plasmalogen-specific enol ether double bond. The enol ether methine 1H signal decreased on the addition of copper, saturation being reached at a molar ratio of lysoBP-PtdEtn to copper of 1:1. The original 1H signal was recovered almost completely after the addition of EDTA. Enrichment of micelles and low-density lipoproteins (LDLs) with plasmalogen phospholipids led to a decrease in the Cu(II) concentration in the aqueous media. After loading of LDLs in vitro with BP-PtdEtn, the LDL-dependent formation of Cu(I) was decreased, in particular in particles experimentally supplemented with alpha-tocopherol. The suppression of copper-promoted lipid oxidation that was observed in the presence of plasmalogen phospholipids plus alpha-tocopherol was greater than the sum of the protective effects elicited by the two substances alone. In conclusion, the formation of a complex between copper ions and the plasmalogens accounts partly for their inhibition of copper-induced lipid oxidation.
Full Text
The Full Text of this article is available as a PDF (125.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Broekman M. J., Handin R. I., Derksen A., Cohen P. Distribution of phospholipids, fatty acids, and platelet factor 3 activity among subcellular fractions of human platelets. Blood. 1976 Jun;47(6):963–971. [PubMed] [Google Scholar]
- Bräutigam C., Engelmann B., Reiss D., Reinhardt U., Thiery J., Richter W. O., Brosche T. Plasmalogen phospholipids in plasma lipoproteins of normolipidemic donors and patients with hypercholesterolemia treated by LDL apheresis. Atherosclerosis. 1996 Jan 5;119(1):77–88. doi: 10.1016/0021-9150(95)05632-7. [DOI] [PubMed] [Google Scholar]
- Calzada C., Bruckdorfer K. R., Rice-Evans C. A. The influence of antioxidant nutrients on platelet function in healthy volunteers. Atherosclerosis. 1997 Jan 3;128(1):97–105. doi: 10.1016/s0021-9150(96)05974-6. [DOI] [PubMed] [Google Scholar]
- Carey E. M. The quantitative determination of plasmalogen by its reaction with mercuric chloride. Lipids. 1982 Sep;17(9):656–661. doi: 10.1007/BF02535374. [DOI] [PubMed] [Google Scholar]
- Dacremont G., Vincent G. Assay of plasmalogens and polyunsaturated fatty acids (PUFA) in erythrocytes and fibroblasts. J Inherit Metab Dis. 1995;18 (Suppl 1):84–89. doi: 10.1007/BF00711431. [DOI] [PubMed] [Google Scholar]
- Engelmann B., Bräutigam C., Thiery J. Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem Biophys Res Commun. 1994 Nov 15;204(3):1235–1242. doi: 10.1006/bbrc.1994.2595. [DOI] [PubMed] [Google Scholar]
- Esterbauer H., Dieber-Rotheneder M., Waeg G., Puhl H., Tatzber F. Endogenous antioxidants and lipoprotein oxidation. Biochem Soc Trans. 1990 Dec;18(6):1059–1061. doi: 10.1042/bst0181059. [DOI] [PubMed] [Google Scholar]
- Esterbauer H., Ramos P. Chemistry and pathophysiology of oxidation of LDL. Rev Physiol Biochem Pharmacol. 1996;127:31–64. doi: 10.1007/BFb0048264. [DOI] [PubMed] [Google Scholar]
- Goyal J., Wang K., Liu M., Subbaiah P. V. Novel function of lecithin-cholesterol acyltransferase. Hydrolysis of oxidized polar phospholipids generated during lipoprotein oxidation. J Biol Chem. 1997 Jun 27;272(26):16231–16239. doi: 10.1074/jbc.272.26.16231. [DOI] [PubMed] [Google Scholar]
- HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinecke J. W. Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis. 1998 Nov;141(1):1–15. doi: 10.1016/s0021-9150(98)00173-7. [DOI] [PubMed] [Google Scholar]
- Holvoet P., Theilmeier G., Shivalkar B., Flameng W., Collen D. LDL hypercholesterolemia is associated with accumulation of oxidized LDL, atherosclerotic plaque growth, and compensatory vessel enlargement in coronary arteries of miniature pigs. Arterioscler Thromb Vasc Biol. 1998 Mar;18(3):415–422. doi: 10.1161/01.atv.18.3.415. [DOI] [PubMed] [Google Scholar]
- Hörkkö S., Bird D. A., Miller E., Itabe H., Leitinger N., Subbanagounder G., Berliner J. A., Friedman P., Dennis E. A., Curtiss L. K. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest. 1999 Jan;103(1):117–128. doi: 10.1172/JCI4533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jürgens G., Ashy A., Esterbauer H. Detection of new epitopes formed upon oxidation of low-density lipoprotein, lipoprotein (a) and very-low-density lipoprotein. Use of an antiserum against 4-hydroxynonenal-modified low-density lipoprotein. Biochem J. 1990 Jan 15;265(2):605–608. doi: 10.1042/bj2650605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jürgens G., Fell A., Ledinski G., Chen Q., Paltauf F. Delay of copper-catalyzed oxidation of low density lipoprotein by in vitro enrichment with choline or ethanolamine plasmalogens. Chem Phys Lipids. 1995 Aug 1;77(1):25–31. doi: 10.1016/0009-3084(95)02451-n. [DOI] [PubMed] [Google Scholar]
- Kienzl E., Puchinger L., Jellinger K., Linert W., Stachelberger H., Jameson R. F. The role of transition metals in the pathogenesis of Parkinson's disease. J Neurol Sci. 1995 Dec;134 (Suppl):69–78. doi: 10.1016/0022-510x(95)00210-s. [DOI] [PubMed] [Google Scholar]
- Kontush A., Meyer S., Finckh B., Kohlschütter A., Beisiegel U. Alpha-tocopherol as a reductant for Cu(II) in human lipoproteins. Triggering role in the initiation of lipoprotein oxidation. J Biol Chem. 1996 May 10;271(19):11106–11112. doi: 10.1074/jbc.271.19.11106. [DOI] [PubMed] [Google Scholar]
- Kugiyama K., Kerns S. A., Morrisett J. D., Roberts R., Henry P. D. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990 Mar 8;344(6262):160–162. doi: 10.1038/344160a0. [DOI] [PubMed] [Google Scholar]
- Kume N., Gimbrone M. A., Jr Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J Clin Invest. 1994 Feb;93(2):907–911. doi: 10.1172/JCI117047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuzuya M., Yamada K., Hayashi T., Funaki C., Naito M., Asai K., Kuzuya F. Role of lipoprotein-copper complex in copper catalyzed-peroxidation of low-density lipoprotein. Biochim Biophys Acta. 1992 Feb 12;1123(3):334–341. doi: 10.1016/0005-2760(92)90015-n. [DOI] [PubMed] [Google Scholar]
- Lehtimäki T., Lehtinen S., Solakivi T., Nikkilä M., Jaakkola O., Jokela H., Ylä-Herttuala S., Luoma J. S., Koivula T., Nikkari T. Autoantibodies against oxidized low density lipoprotein in patients with angiographically verified coronary artery disease. Arterioscler Thromb Vasc Biol. 1999 Jan;19(1):23–27. doi: 10.1161/01.atv.19.1.23. [DOI] [PubMed] [Google Scholar]
- Lynch S. M., Frei B. Reduction of copper, but not iron, by human low density lipoprotein (LDL). Implications for metal ion-dependent oxidative modification of LDL. J Biol Chem. 1995 Mar 10;270(10):5158–5163. doi: 10.1074/jbc.270.10.5158. [DOI] [PubMed] [Google Scholar]
- Maiorino M., Zamburlini A., Roveri A., Ursini F. Prooxidant role of vitamin E in copper induced lipid peroxidation. FEBS Lett. 1993 Sep 13;330(2):174–176. doi: 10.1016/0014-5793(93)80267-x. [DOI] [PubMed] [Google Scholar]
- Meyer D. F., Nealis A. S., Macphee C. H., Groot P. H., Suckling K. E., Bruckdorfer K. R., Perkins S. J. Time-course studies by synchrotron X-ray solution scattering of the structure of human low-density lipoprotein during Cu(2+)-induced oxidation in relation to changes in lipid composition. Biochem J. 1996 Oct 1;319(Pt 1):217–227. doi: 10.1042/bj3190217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel R. P., Svistunenko D., Wilson M. T., Darley-Usmar V. M. Reduction of Cu(II) by lipid hydroperoxides: implications for the copper-dependent oxidation of low-density lipoprotein. Biochem J. 1997 Mar 1;322(Pt 2):425–433. doi: 10.1042/bj3220425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quinn M. T., Parthasarathy S., Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2805–2809. doi: 10.1073/pnas.85.8.2805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reiss D., Beyer K., Engelmann B. Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem J. 1997 May 1;323(Pt 3):807–814. doi: 10.1042/bj3230807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salonen J. T., Salonen R., Seppänen K., Kantola M., Suntioinen S., Korpela H. Interactions of serum copper, selenium, and low density lipoprotein cholesterol in atherogenesis. BMJ. 1991 Mar 30;302(6779):756–760. doi: 10.1136/bmj.302.6779.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
- Steinbrecher U. P., Parthasarathy S., Leake D. S., Witztum J. L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3883–3887. doi: 10.1073/pnas.81.12.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vatassery G. T. Determination of tocopherols and tocopherolquinone in human red blood cell and platelet samples. Methods Enzymol. 1994;234:327–331. doi: 10.1016/0076-6879(94)34101-x. [DOI] [PubMed] [Google Scholar]
- Wagner P., Heinecke J. W. Copper ions promote peroxidation of low density lipoprotein lipid by binding to histidine residues of apolipoprotein B100, but they are reduced at other sites on LDL. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):3338–3346. doi: 10.1161/01.atv.17.11.3338. [DOI] [PubMed] [Google Scholar]
- Yoshida Y., Tsuchiya J., Niki E. Interaction of alpha-tocopherol with copper and its effect on lipid peroxidation. Biochim Biophys Acta. 1994 Jul 6;1200(2):85–92. doi: 10.1016/0304-4165(94)90121-x. [DOI] [PubMed] [Google Scholar]
- Ziouzenkova O., Gieseg S. P., Ramos P., Esterbauer H. Factors affecting resistance of low density lipoproteins to oxidation. Lipids. 1996 Mar;31 (Suppl):S71–S76. doi: 10.1007/BF02637054. [DOI] [PubMed] [Google Scholar]
- Zoeller R. A., Morand O. H., Raetz C. R. A possible role for plasmalogens in protecting animal cells against photosensitized killing. J Biol Chem. 1988 Aug 15;263(23):11590–11596. [PubMed] [Google Scholar]
- Zommara M., Tachibana N., Mitsui K., Nakatani N., Sakono M., Ikeda I., Imaizumi K. Inhibitory effect of ethanolamine plasmalogen on iron- and copper-dependent lipid peroxidation. Free Radic Biol Med. 1995 Mar;18(3):599–602. doi: 10.1016/0891-5849(94)00155-d. [DOI] [PubMed] [Google Scholar]