Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jun 1;340(Pt 2):397–404.

Mechanism of ubiquitous expression of mouse uncoupling protein 2 mRNA: control by cis-acting DNA element in 5'-flanking region.

H Yoshitomi 1, K Yamazaki 1, I Tanaka 1
PMCID: PMC1220263  PMID: 10333481

Abstract

Uncoupling protein (UCP) 2 is a member of the uncoupling-protein family, and it appears to function as an uncoupler of oxidative phosphorylation. To identify cis-acting regulatory elements controlling this gene's expression, we cloned an approx. 6.2-kb region upstream from the translation-initiation site of the mouse UCP2 gene and analysed its transcription activity using chimaeric mouse UCP2 promoter-placental-alkaline-phosphatase (PLAP) reporter-gene constructs. Sequence analysis showed that the 5'-flanking region of the mouse UCP2 gene was not similar to those of mouse UCP1 or UCP3. For the mouse UCP2, the region near the transcription-initiation site lacked the typical TATA box, but was GC-rich, resulting in presence of several potential specificity protein 1 (Sp-1), activator protein (AP)-1 and AP-2 binding sites. The putative regulatory motifs for muscle-regulatory protein (MyoD), brown-fat regulatory element, CCAAT box, cAMP-response element and Y box were also found in the mouse UCP2 promoter region by computer-assisted analysis. From the results of Northern-blot analysis and transient expression assay, we found that the mouse UCP2 gene responded to the cAMP-dependent protein kinase alpha-catalytic subunit signal activation at the transcription level. Additionally, deletion analysis of the UCP2 promoter-PLAP constructs indicated that the minimal region exhibiting the promoter activity was located between nt -33 and +100, and that a strong enhancer was present within 601 bp of the 5'-promoter region. In particular, the region from nt -233 to -34 significantly induced PLAP activity in the cell lines derived from various tissues and in the primary culture cells of rat brown adipose tissue, suggesting that this region is most important for the ubiquitous expression of mouse UCP2 mRNA. Furthermore, it was shown that two silencer elements were involved in the mouse UCP2 gene; one was located between nt -2746 and -602, and the other was identified in intron 1. These regions deprived the enhancer of the ability to induce PLAP activity. This study shows a fundamental role for positive and negative cis-acting DNA elements in regulating the basal and cAMP-induced transcription activity of the mouse UCP2 gene.

Full Text

The Full Text of this article is available as a PDF (179.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arch J. R., Ainsworth A. T., Cawthorne M. A., Piercy V., Sennitt M. V., Thody V. E., Wilson C., Wilson S. Atypical beta-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature. 1984 May 10;309(5964):163–165. doi: 10.1038/309163a0. [DOI] [PubMed] [Google Scholar]
  2. Aubert J., Champigny O., Saint-Marc P., Negrel R., Collins S., Ricquier D., Ailhaud G. Up-regulation of UCP-2 gene expression by PPAR agonists in preadipose and adipose cells. Biochem Biophys Res Commun. 1997 Sep 18;238(2):606–611. doi: 10.1006/bbrc.1997.7348. [DOI] [PubMed] [Google Scholar]
  3. Bianco A. C., Sheng X. Y., Silva J. E. Triiodothyronine amplifies norepinephrine stimulation of uncoupling protein gene transcription by a mechanism not requiring protein synthesis. J Biol Chem. 1988 Dec 5;263(34):18168–18175. [PubMed] [Google Scholar]
  4. Bouillaud F., Weissenbach J., Ricquier D. Complete cDNA-derived amino acid sequence of rat brown fat uncoupling protein. J Biol Chem. 1986 Feb 5;261(4):1487–1490. [PubMed] [Google Scholar]
  5. Brooks S. L., Rothwell N. J., Stock M. J., Goodbody A. E., Trayhurn P. Increased proton conductance pathway in brown adipose tissue mitochondria of rats exhibiting diet-induced thermogenesis. Nature. 1980 Jul 17;286(5770):274–276. doi: 10.1038/286274a0. [DOI] [PubMed] [Google Scholar]
  6. Carmona M. C., Valmaseda A., Brun S., Viñas O., Mampel T., Iglesias R., Giralt M., Villarroya F. Differential regulation of uncoupling protein-2 and uncoupling protein-3 gene expression in brown adipose tissue during development and cold exposure. Biochem Biophys Res Commun. 1998 Feb 4;243(1):224–228. doi: 10.1006/bbrc.1998.8088. [DOI] [PubMed] [Google Scholar]
  7. Cassard-Doulcier A. M., Gelly C., Fox N., Schrementi J., Raimbault S., Klaus S., Forest C., Bouillaud F., Ricquier D. Tissue-specific and beta-adrenergic regulation of the mitochondrial uncoupling protein gene: control by cis-acting elements in the 5'-flanking region. Mol Endocrinol. 1993 Apr;7(4):497–506. doi: 10.1210/mend.7.4.8388995. [DOI] [PubMed] [Google Scholar]
  8. Chen M., Schnermann J., Smart A. M., Brosius F. C., Killen P. D., Briggs J. P. Cyclic AMP selectively increases renin mRNA stability in cultured juxtaglomerular granular cells. J Biol Chem. 1993 Nov 15;268(32):24138–24144. [PubMed] [Google Scholar]
  9. Clark A. R., Docherty K. Negative regulation of transcription in eukaryotes. Biochem J. 1993 Dec 15;296(Pt 3):521–541. doi: 10.1042/bj2960521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dorn A., Bollekens J., Staub A., Benoist C., Mathis D. A multiplicity of CCAAT box-binding proteins. Cell. 1987 Sep 11;50(6):863–872. doi: 10.1016/0092-8674(87)90513-7. [DOI] [PubMed] [Google Scholar]
  11. Enerbäck S., Jacobsson A., Simpson E. M., Guerra C., Yamashita H., Harper M. E., Kozak L. P. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997 May 1;387(6628):90–94. doi: 10.1038/387090a0. [DOI] [PubMed] [Google Scholar]
  12. Fleury C., Neverova M., Collins S., Raimbault S., Champigny O., Levi-Meyrueis C., Bouillaud F., Seldin M. F., Surwit R. S., Ricquier D. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet. 1997 Mar;15(3):269–272. doi: 10.1038/ng0397-269. [DOI] [PubMed] [Google Scholar]
  13. Garlid K. D., Orosz D. E., Modrianský M., Vassanelli S., Jezek P. On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J Biol Chem. 1996 Feb 2;271(5):2615–2620. doi: 10.1074/jbc.271.5.2615. [DOI] [PubMed] [Google Scholar]
  14. Gimeno R. E., Dembski M., Weng X., Deng N., Shyjan A. W., Gimeno C. J., Iris F., Ellis S. J., Woolf E. A., Tartaglia L. A. Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes. 1997 May;46(5):900–906. doi: 10.2337/diab.46.5.900. [DOI] [PubMed] [Google Scholar]
  15. Glimcher L. H., Kara C. J. Sequences and factors: a guide to MHC class-II transcription. Annu Rev Immunol. 1992;10:13–49. doi: 10.1146/annurev.iy.10.040192.000305. [DOI] [PubMed] [Google Scholar]
  16. Gonzalez G. A., Yamamoto K. K., Fischer W. H., Karr D., Menzel P., Biggs W., 3rd, Vale W. W., Montminy M. R. A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature. 1989 Feb 23;337(6209):749–752. doi: 10.1038/337749a0. [DOI] [PubMed] [Google Scholar]
  17. Goto M., Yamada K., Katayama K., Tanaka I. Inhibitory effect of E3330, a novel quinone derivative able to suppress tumor necrosis factor-alpha generation, on activation of nuclear factor-kappa B. Mol Pharmacol. 1996 May;49(5):860–873. [PubMed] [Google Scholar]
  18. Hadcock J. R., Wang H. Y., Malbon C. C. Agonist-induced destabilization of beta-adrenergic receptor mRNA. Attenuation of glucocorticoid-induced up-regulation of beta-adrenergic receptors. J Biol Chem. 1989 Nov 25;264(33):19928–19933. [PubMed] [Google Scholar]
  19. Heaton J. H., Tillmann-Bogush M., Leff N. S., Gelehrter T. D. Cyclic nucleotide regulation of type-1 plasminogen activator-inhibitor mRNA stability in rat hepatoma cells. Identification of cis-acting sequences. J Biol Chem. 1998 Jun 5;273(23):14261–14268. doi: 10.1074/jbc.273.23.14261. [DOI] [PubMed] [Google Scholar]
  20. Herrera R., Ro H. S., Robinson G. S., Xanthopoulos K. G., Spiegelman B. M. A direct role for C/EBP and the AP-I-binding site in gene expression linked to adipocyte differentiation. Mol Cell Biol. 1989 Dec;9(12):5331–5339. doi: 10.1128/mcb.9.12.5331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Himms-Hagen J. Brown adipose tissue thermogenesis and obesity. Prog Lipid Res. 1989;28(2):67–115. doi: 10.1016/0163-7827(89)90009-x. [DOI] [PubMed] [Google Scholar]
  22. Jacobsson A., Stadler U., Glotzer M. A., Kozak L. P. Mitochondrial uncoupling protein from mouse brown fat. Molecular cloning, genetic mapping, and mRNA expression. J Biol Chem. 1985 Dec 25;260(30):16250–16254. [PubMed] [Google Scholar]
  23. Jezek P., Hanus J., Semrad C., Garlid K. D. Photoactivated azido fatty acid irreversibly inhibits anion and proton transport through the mitochondrial uncoupling protein. J Biol Chem. 1996 Mar 15;271(11):6199–6205. doi: 10.1074/jbc.271.11.6199. [DOI] [PubMed] [Google Scholar]
  24. Kozak U. C., Held W., Kreutter D., Kozak L. P. Adrenergic regulation of the mitochondrial uncoupling protein gene in brown fat tumor cells. Mol Endocrinol. 1992 May;6(5):763–772. doi: 10.1210/mend.6.5.1603085. [DOI] [PubMed] [Google Scholar]
  25. Kozak U. C., Kopecky J., Teisinger J., Enerbäck S., Boyer B., Kozak L. P. An upstream enhancer regulating brown-fat-specific expression of the mitochondrial uncoupling protein gene. Mol Cell Biol. 1994 Jan;14(1):59–67. doi: 10.1128/mcb.14.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lee C. Q., Yun Y. D., Hoeffler J. P., Habener J. F. Cyclic-AMP-responsive transcriptional activation of CREB-327 involves interdependent phosphorylated subdomains. EMBO J. 1990 Dec;9(13):4455–4465. doi: 10.1002/j.1460-2075.1990.tb07896.x. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  27. Lin C. S., Klingenberg M. Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett. 1980 May 5;113(2):299–303. doi: 10.1016/0014-5793(80)80613-2. [DOI] [PubMed] [Google Scholar]
  28. Lowell B. B., Flier J. S. Brown adipose tissue, beta 3-adrenergic receptors, and obesity. Annu Rev Med. 1997;48:307–316. doi: 10.1146/annurev.med.48.1.307. [DOI] [PubMed] [Google Scholar]
  29. Maruyama K., Sugano S. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene. 1994 Jan 28;138(1-2):171–174. doi: 10.1016/0378-1119(94)90802-8. [DOI] [PubMed] [Google Scholar]
  30. Pan W. T., Liu Q. R., Bancroft C. Identification of a growth hormone gene promoter repressor element and its cognate double- and single-stranded DNA-binding proteins. J Biol Chem. 1990 Apr 25;265(12):7022–7028. [PubMed] [Google Scholar]
  31. Pende A., Tremmel K. D., DeMaria C. T., Blaxall B. C., Minobe W. A., Sherman J. A., Bisognano J. D., Bristow M. R., Brewer G., Port J. Regulation of the mRNA-binding protein AUF1 by activation of the beta-adrenergic receptor signal transduction pathway. J Biol Chem. 1996 Apr 5;271(14):8493–8501. doi: 10.1074/jbc.271.14.8493. [DOI] [PubMed] [Google Scholar]
  32. Quitschke W. W., Lin Z. Y., DePonti-Zilli L., Paterson B. M. The beta actin promoter. High levels of transcription depend upon a CCAAT binding factor. J Biol Chem. 1989 Jun 5;264(16):9539–9546. [PubMed] [Google Scholar]
  33. Rauscher F. J., 3rd, Sambucetti L. C., Curran T., Distel R. J., Spiegelman B. M. Common DNA binding site for Fos protein complexes and transcription factor AP-1. Cell. 1988 Feb 12;52(3):471–480. doi: 10.1016/s0092-8674(88)80039-4. [DOI] [PubMed] [Google Scholar]
  34. Ricquier D., Mory G., Bouillaud F., Combes-George M., Thibault J. Factors controlling brown adipose tissue development. Reprod Nutr Dev. 1985;25(1B):175–181. doi: 10.1051/rnd:19850205. [DOI] [PubMed] [Google Scholar]
  35. Rothwell N. J., Stock M. J. A role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979 Sep 6;281(5726):31–35. doi: 10.1038/281031a0. [DOI] [PubMed] [Google Scholar]
  36. Schaefer B. C. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal Biochem. 1995 May 20;227(2):255–273. doi: 10.1006/abio.1995.1279. [DOI] [PubMed] [Google Scholar]
  37. Shimizu Y., Kielar D., Masuno H., Minokoshi Y., Shimazu T. Dexamethasone induces the GLUT4 glucose transporter, and responses of glucose transport to norepinephrine and insulin in primary cultures of brown adipocytes. J Biochem. 1994 Jun;115(6):1069–1074. doi: 10.1093/oxfordjournals.jbchem.a124459. [DOI] [PubMed] [Google Scholar]
  38. Skulachev V. P. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett. 1991 Dec 9;294(3):158–162. doi: 10.1016/0014-5793(91)80658-p. [DOI] [PubMed] [Google Scholar]
  39. Surwit R. S., Wang S., Petro A. E., Sanchis D., Raimbault S., Ricquier D., Collins S. Diet-induced changes in uncoupling proteins in obesity-prone and obesity-resistant strains of mice. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):4061–4065. doi: 10.1073/pnas.95.7.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tian D., Huang D., Brown R. C., Jungmann R. A. Protein kinase A stimulates binding of multiple proteins to a U-rich domain in the 3'-untranslated region of lactate dehydrogenase A mRNA that is required for the regulation of mRNA stability. J Biol Chem. 1998 Oct 23;273(43):28454–28460. doi: 10.1074/jbc.273.43.28454. [DOI] [PubMed] [Google Scholar]
  41. Tian D., Huang D., Short S., Short M. L., Jungmann R. A. Protein kinase A-regulated instability site in the 3'-untranslated region of lactate dehydrogenase-A subunit mRNA. J Biol Chem. 1998 Sep 18;273(38):24861–24866. doi: 10.1074/jbc.273.38.24861. [DOI] [PubMed] [Google Scholar]
  42. Tronche F., Rollier A., Sourdive D., Cereghini S., Yaniv M. NFY or a related CCAAT binding factor can be replaced by other transcriptional activators for co-operation with HNF1 in driving the rat albumin promoter in vivo. J Mol Biol. 1991 Nov 5;222(1):31–43. doi: 10.1016/0022-2836(91)90735-o. [DOI] [PubMed] [Google Scholar]
  43. Yamada M., Hashida T., Shibusawa N., Iwasaki T., Murakami M., Monden T., Satoh T., Mori M. Genomic organization and promoter function of the mouse uncoupling protein 2 (UCP2) gene. FEBS Lett. 1998 Jul 31;432(1-2):65–69. doi: 10.1016/s0014-5793(98)00835-7. [DOI] [PubMed] [Google Scholar]
  44. Yamamoto K. K., Gonzalez G. A., Biggs W. H., 3rd, Montminy M. R. Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature. 1988 Aug 11;334(6182):494–498. doi: 10.1038/334494a0. [DOI] [PubMed] [Google Scholar]
  45. Yaworsky P. J., Gardner D. P., Kappen C. Transgenic analyses reveal developmentally regulated neuron- and muscle-specific elements in the murine neurofilament light chain gene promoter. J Biol Chem. 1997 Oct 3;272(40):25112–25120. doi: 10.1074/jbc.272.40.25112. [DOI] [PubMed] [Google Scholar]
  46. Yoshitomi H., Yamazaki K., Abe S., Tanaka I. Differential regulation of mouse uncoupling proteins among brown adipose tissue, white adipose tissue, and skeletal muscle in chronic beta 3 adrenergic receptor agonist treatment. Biochem Biophys Res Commun. 1998 Dec 9;253(1):85–91. doi: 10.1006/bbrc.1998.9746. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES