Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jun 1;340(Pt 2):459–465.

Expression of hormone-sensitive lipase and its regulation by adrenaline in skeletal muscle.

J Langfort 1, T Ploug 1, J Ihlemann 1, M Saldo 1, C Holm 1, H Galbo 1
PMCID: PMC1220272  PMID: 10333490

Abstract

The enzymic regulation of triacylglycerol breakdown in skeletal muscle is poorly understood. Western blotting of muscle fibres isolated by collagenase treatment or after freeze-drying demonstrated the presence of immunoreactive hormone-sensitive lipase (HSL), with the concentrations in soleus and diaphragm being more than four times the concentrations in extensor digitorum longus and epitrochlearis muscles. Neutral lipase activity determined under conditions optimal for HSL varied directly with immunoreactivity. Expressed relative to triacylglycerol content, neutral lipase activity in soleus muscle was about 10 times that in epididymal adipose tissue. In incubated soleus muscle, both neutral lipase activity against triacylglycerol (but not against a diacylglycerol analogue) and glycogen phosphorylase activity increased in response to adrenaline (epinephrine). The lipase activation was completely inhibited by anti-HSL antibody and by propranolol. The effect of adrenaline could be mimicked by incubation of crude supernatant from control muscle with the catalytic subunit of cAMP-dependent protein kinase, while no effect of the kinase subunit was seen with supernatant from adrenaline-treated muscle. The results indicate that HSL is present in skeletal muscle and is stimulated by adrenaline via beta-adrenergic activation of cAMP-dependent protein kinase. The concentration of HSL is higher in oxidative than in glycolytic muscle, and the enzyme is activated in parallel with glycogen phosphorylase.

Full Text

The Full Text of this article is available as a PDF (158.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abumrad N. A., Tepperman H. M., Tepperman J. Control of endogenous triglyceride breakdown in the mouse diaphragm. J Lipid Res. 1980 Feb;21(2):149–155. [PubMed] [Google Scholar]
  2. Egan J. J., Greenberg A. S., Chang M. K., Wek S. A., Moos M. C., Jr, Londos C. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8537–8541. doi: 10.1073/pnas.89.18.8537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frayn K. N., Langin D., Holm C., Belfrage P. Hormone-sensitive lipase: quantitation of enzyme activity and mRNA level in small biopsies of human adipose tissue. Clin Chim Acta. 1993 Jul 16;216(1-2):183–189. doi: 10.1016/0009-8981(93)90151-s. [DOI] [PubMed] [Google Scholar]
  4. Fredrikson G., Nilsson S., Olsson H., Björck L., Akerström B., Belfrage P. Use of protein G for preparation and characterization of rabbit antibodies against rat adipose tissue hormone-sensitive lipase. J Immunol Methods. 1987 Feb 26;97(1):65–70. doi: 10.1016/0022-1759(87)90106-2. [DOI] [PubMed] [Google Scholar]
  5. Fröberg S. O., Hultman E., Nilsson L. H. Effect of noradrenaline on triglyceride and glycogen concentrations in liver and muscle from man. Metabolism. 1975 Feb;24(2):119–126. doi: 10.1016/0026-0495(75)90012-8. [DOI] [PubMed] [Google Scholar]
  6. Gilboe D. P., Larson K. L., Nuttall F. Q. Radioactive method for the assay of glycogen phosphorylases. Anal Biochem. 1972 May;47(1):20–27. doi: 10.1016/0003-2697(72)90274-6. [DOI] [PubMed] [Google Scholar]
  7. Hagström-Toft E., Enoksson S., Moberg E., Bolinder J., Arner P. Absolute concentrations of glycerol and lactate in human skeletal muscle, adipose tissue, and blood. Am J Physiol. 1997 Sep;273(3 Pt 1):E584–E592. doi: 10.1152/ajpendo.1997.273.3.E584. [DOI] [PubMed] [Google Scholar]
  8. Ho K. W., Heusner W. W., Van Huss J., Van Huss W. D. Postnatal muscle fibre histochemistry in the rat. J Embryol Exp Morphol. 1983 Aug;76:37–49. [PubMed] [Google Scholar]
  9. Holm C., Belfrage P., Fredrikson G. Immunological evidence for the presence of hormone-sensitive lipase in rat tissues other than adipose tissue. Biochem Biophys Res Commun. 1987 Oct 14;148(1):99–105. doi: 10.1016/0006-291x(87)91081-3. [DOI] [PubMed] [Google Scholar]
  10. Holm C., Kirchgessner T. G., Svenson K. L., Fredrikson G., Nilsson S., Miller C. G., Shively J. E., Heinzmann C., Sparkes R. S., Mohandas T. Hormone-sensitive lipase: sequence, expression, and chromosomal localization to 19 cent-q13.3. Science. 1988 Sep 16;241(4872):1503–1506. doi: 10.1126/science.3420405. [DOI] [PubMed] [Google Scholar]
  11. Jaromowska M., Górski J. Effect of fasting on skeletal muscle triglyceride content. Experientia. 1985 Mar 15;41(3):357–358. doi: 10.1007/BF02004502. [DOI] [PubMed] [Google Scholar]
  12. Jepson C. A., Yeaman S. J. Inhibition of hormone-sensitive lipase by intermediary lipid metabolites. FEBS Lett. 1992 Sep 28;310(2):197–200. doi: 10.1016/0014-5793(92)81328-j. [DOI] [PubMed] [Google Scholar]
  13. Kerckhoffs D. A., Arner P., Bolinder J. Lipolysis and lactate production in human skeletal muscle and adipose tissue following glucose ingestion. Clin Sci (Lond) 1998 Jan;94(1):71–77. doi: 10.1042/cs0940071. [DOI] [PubMed] [Google Scholar]
  14. Kjaer M., Christensen N. J., Sonne B., Richter E. A., Galbo H. Effect of exercise on epinephrine turnover in trained and untrained male subjects. J Appl Physiol (1985) 1985 Oct;59(4):1061–1067. doi: 10.1152/jappl.1985.59.4.1061. [DOI] [PubMed] [Google Scholar]
  15. Korneliussen H. Identification of muscle fiber types in "semithin" sections stained with p-phenylene-diamine. Histochemie. 1972;32(1):95–98. doi: 10.1007/BF00277476. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Langin D., Holm C., Lafontan M. Adipocyte hormone-sensitive lipase: a major regulator of lipid metabolism. Proc Nutr Soc. 1996 Mar;55(1B):93–109. doi: 10.1079/pns19960013. [DOI] [PubMed] [Google Scholar]
  18. Martin W. H., 3rd Effects of acute and chronic exercise on fat metabolism. Exerc Sport Sci Rev. 1996;24:203–231. [PubMed] [Google Scholar]
  19. Nesher R., Karl I. E., Kaiser K. E., Kipnis D. M. Epitrochlearis muscle. I. Mechanical performance, energetics, and fiber composition. Am J Physiol. 1980 Dec;239(6):E454–E460. doi: 10.1152/ajpendo.1980.239.6.E454. [DOI] [PubMed] [Google Scholar]
  20. Oscai L. B., Essig D. A., Palmer W. K. Lipase regulation of muscle triglyceride hydrolysis. J Appl Physiol (1985) 1990 Nov;69(5):1571–1577. doi: 10.1152/jappl.1990.69.5.1571. [DOI] [PubMed] [Google Scholar]
  21. Osterlund T., Danielsson B., Degerman E., Contreras J. A., Edgren G., Davis R. C., Schotz M. C., Holm C. Domain-structure analysis of recombinant rat hormone-sensitive lipase. Biochem J. 1996 Oct 15;319(Pt 2):411–420. doi: 10.1042/bj3190411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pan D. A., Lillioja S., Kriketos A. D., Milner M. R., Baur L. A., Bogardus C., Jenkins A. B., Storlien L. H. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997 Jun;46(6):983–988. doi: 10.2337/diab.46.6.983. [DOI] [PubMed] [Google Scholar]
  23. Richter E. A., Ruderman N. B., Gavras H., Belur E. R., Galbo H. Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Am J Physiol. 1982 Jan;242(1):E25–E32. doi: 10.1152/ajpendo.1982.242.1.E25. [DOI] [PubMed] [Google Scholar]
  24. Schick F., Eismann B., Jung W. I., Bongers H., Bunse M., Lutz O. Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn Reson Med. 1993 Feb;29(2):158–167. doi: 10.1002/mrm.1910290203. [DOI] [PubMed] [Google Scholar]
  25. Small C. A., Garton A. J., Yeaman S. J. The presence and role of hormone-sensitive lipase in heart muscle. Biochem J. 1989 Feb 15;258(1):67–72. doi: 10.1042/bj2580067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Standl E., Lotz N., Dexel T., Janka H. U., Kolb H. J. Muscle triglycerides in diabetic subjects. Effect of insulin deficiency and exercise. Diabetologia. 1980 Jun;18(6):463–469. doi: 10.1007/BF00261702. [DOI] [PubMed] [Google Scholar]
  27. Stankiewicz-Choroszucha B., Górski J. Effect of beta-adrenergic blockade on intramuscular triglyceride mobilization during exercise. Experientia. 1978 Mar 15;34(3):357–358. doi: 10.1007/BF01923033. [DOI] [PubMed] [Google Scholar]
  28. Stearns S. B., Tepperman H. M., Tepperman J. Studies on the utilization and mobilization of lipid in skeletal muscles from streptozotocin-diabetic and control rats. J Lipid Res. 1979 Jul;20(5):654–662. [PubMed] [Google Scholar]
  29. Storlien L. H., Jenkins A. B., Chisholm D. J., Pascoe W. S., Khouri S., Kraegen E. W. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes. 1991 Feb;40(2):280–289. doi: 10.2337/diab.40.2.280. [DOI] [PubMed] [Google Scholar]
  30. Tornqvist H., Björgell P., Krabisch L., Belfrage P. Monoacylmonoalkylglycerol as a substrate for diacylglycerol hydrolase activity in adipose tissue. J Lipid Res. 1978 Jul;19(5):654–656. [PubMed] [Google Scholar]
  31. Yeaman S. J. Hormone-sensitive lipase--a multipurpose enzyme in lipid metabolism. Biochim Biophys Acta. 1990 Apr 9;1052(1):128–132. doi: 10.1016/0167-4889(90)90067-n. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES