Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jun 1;340(Pt 2):519–527.

Ryanodine and inositol trisphosphate receptors are differentially distributed and expressed in rat parotid gland.

X Zhang 1, J Wen 1, K R Bidasee 1, H R Besch Jr 1, R J Wojcikiewicz 1, B Lee 1, R P Rubin 1
PMCID: PMC1220280  PMID: 10333498

Abstract

The present study examines the cellular distribution of the ryanodine receptor/channel (RyR) and inositol 1,4,5-trisphosphate receptor (InsP3R) subtypes in parotid acini. Using fluorescently labelled 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-3-propionic acid glycyl-ryanodine (BODIPYtrade mark-ryanodine) and confocal microscopy, RyRs were localized primarily to the perinuclear region (basal pole) of the acinar cell. Ryanodine, Ruthenium Red, cAMP and cADP ribose (cADPR) competed with BODIPY-ryanodine, resulting in a reduction in the fluorescence signal. However, inositol 1,4, 5-trisphosphate [Ins(1,4,5)P3] did not alter the binding of BODIPY-ryanodine. Using receptor-subtype-specific antisera, InsP3Rs (types I, II and III) were located predominantly in the apical pole of the parotid cell. The presence of these three subtypes was confirmed using reverse transcriptase PCR with RNA-specific oligonucleotide probes. Binding studies using a parotid cell-membrane fraction identified and characterized RyRs and InsP3Rs in terms of binding affinity (Kd) and maximum binding capacity (Bmax) and confirmed that cADPR displaces ryanodine from its binding sites. Ruthenium Red and 8-Br-cADP-ribose blocked Ca2+ release in permeabilized acinar cells in response to cADPR and cAMP or forskolin, whereas Ins(1,4,5)P3-induced Ca2+ release was unaffected. The localization of the RyRs and InsP3Rs in discrete regions endow broad areas of the parotid cell with ligand-activated Ca2+ channels. The consequences of the dual activation of the RyRs and InsP3Rs by physiologically relevant stimuli such as noradrenaline (norepinephrine) are considered in relation to Ca2+ signalling in the parotid gland.

Full Text

The Full Text of this article is available as a PDF (339.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Ohad I., Schramm M. Dynamic changes in the ultrastructure of the acinar cell of the rat parotid gland during the secretory cycle. J Cell Biol. 1969 Jun;41(3):753–773. doi: 10.1083/jcb.41.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Bhat M. B., Zhao J., Zang W., Balke C. W., Takeshima H., Wier W. G., Ma J. Caffeine-induced release of intracellular Ca2+ from Chinese hamster ovary cells expressing skeletal muscle ryanodine receptor. Effects on full-length and carboxyl-terminal portion of Ca2+ release channels. J Gen Physiol. 1997 Dec;110(6):749–762. doi: 10.1085/jgp.110.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bidasee K. R., Besch H. R., Jr Structure-function relationships among ryanodine derivatives. Pyridyl ryanodine definitively separates activation potency from high affinity. J Biol Chem. 1998 May 15;273(20):12176–12186. doi: 10.1074/jbc.273.20.12176. [DOI] [PubMed] [Google Scholar]
  5. Bootman M. D., Berridge M. J. The elemental principles of calcium signaling. Cell. 1995 Dec 1;83(5):675–678. doi: 10.1016/0092-8674(95)90179-5. [DOI] [PubMed] [Google Scholar]
  6. Chiarenza A. P., Sanz E. G., Vermouth N. T., Aoki A., Bellavia S. L. Effects of continuous light on rat parotid gland structure and reactivity. Anat Embryol (Berl) 1989;179(5):497–501. doi: 10.1007/BF00319593. [DOI] [PubMed] [Google Scholar]
  7. Coronado R., Morrissette J., Sukhareva M., Vaughan D. M. Structure and function of ryanodine receptors. Am J Physiol. 1994 Jun;266(6 Pt 1):C1485–C1504. doi: 10.1152/ajpcell.1994.266.6.C1485. [DOI] [PubMed] [Google Scholar]
  8. DiJulio D. H., Watson E. L., Pessah I. N., Jacobson K. L., Ott S. M., Buck E. D., Singh J. C. Ryanodine receptor type III (Ry3R) identification in mouse parotid acini. Properties and modulation of [3H]ryanodine-binding sites. J Biol Chem. 1997 Jun 20;272(25):15687–15696. doi: 10.1074/jbc.272.25.15687. [DOI] [PubMed] [Google Scholar]
  9. Dunn J., Revel J. P. Association of gap junctions with endoplasmic reticulum in rat parotid glands. Cell Tissue Res. 1984;238(3):589–594. doi: 10.1007/BF00219876. [DOI] [PubMed] [Google Scholar]
  10. Furuichi T., Kohda K., Miyawaki A., Mikoshiba K. Intracellular channels. Curr Opin Neurobiol. 1994 Jun;4(3):294–303. doi: 10.1016/0959-4388(94)90089-2. [DOI] [PubMed] [Google Scholar]
  11. Joseph S. K. The inositol triphosphate receptor family. Cell Signal. 1996 Jan;8(1):1–7. doi: 10.1016/0898-6568(95)02012-8. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lee H. C. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev. 1997 Oct;77(4):1133–1164. doi: 10.1152/physrev.1997.77.4.1133. [DOI] [PubMed] [Google Scholar]
  14. Lee M. G., Xu X., Zeng W., Diaz J., Wojcikiewicz R. J., Kuo T. H., Wuytack F., Racymaekers L., Muallem S. Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca2+]i waves. J Biol Chem. 1997 Jun 20;272(25):15765–15770. doi: 10.1074/jbc.272.25.15765. [DOI] [PubMed] [Google Scholar]
  15. Liu P., Scott J., Smith P. M. Intracellular calcium signalling in rat parotid acinar cells that lack secretory vesicles. Biochem J. 1998 Mar 1;330(Pt 2):847–852. doi: 10.1042/bj3300847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marsault R., Murgia M., Pozzan T., Rizzuto R. Domains of high Ca2+ beneath the plasma membrane of living A7r5 cells. EMBO J. 1997 Apr 1;16(7):1575–1581. doi: 10.1093/emboj/16.7.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McGarry S. J., Williams A. J. Adenosine discriminates between the caffeine and adenine nucleotide sites on the sheep cardiac sarcoplasmic reticulum calcium-release channel. J Membr Biol. 1994 Jan;137(2):169–177. doi: 10.1007/BF00233486. [DOI] [PubMed] [Google Scholar]
  18. McKinney J. S., Desole M. S., Rubin R. P. Convergence of cAMP and phosphoinositide pathways during rat parotid secretion. Am J Physiol. 1989 Oct;257(4 Pt 1):C651–C657. doi: 10.1152/ajpcell.1989.257.4.C651. [DOI] [PubMed] [Google Scholar]
  19. Meissner G., Henderson J. S. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem. 1987 Mar 5;262(7):3065–3073. [PubMed] [Google Scholar]
  20. Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
  21. Newton C. L., Mignery G. A., Südhof T. C. Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem. 1994 Nov 18;269(46):28613–28619. [PubMed] [Google Scholar]
  22. Pozzan T., Rizzuto R., Volpe P., Meldolesi J. Molecular and cellular physiology of intracellular calcium stores. Physiol Rev. 1994 Jul;74(3):595–636. doi: 10.1152/physrev.1994.74.3.595. [DOI] [PubMed] [Google Scholar]
  23. Rubin R. P., Adolf M. A. Cyclic AMP regulation of calcium mobilization and amylase release from isolated permeabilized rat parotid cells. J Pharmacol Exp Ther. 1994 Feb;268(2):600–606. [PubMed] [Google Scholar]
  24. Sitsapesan R., McGarry S. J., Williams A. J. Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release. Trends Pharmacol Sci. 1995 Nov;16(11):386–391. doi: 10.1016/s0165-6147(00)89080-x. [DOI] [PubMed] [Google Scholar]
  25. Sutko J. L., Airey J. A. Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev. 1996 Oct;76(4):1027–1071. doi: 10.1152/physrev.1996.76.4.1027. [DOI] [PubMed] [Google Scholar]
  26. Sutko J. L., Airey J. A., Welch W., Ruest L. The pharmacology of ryanodine and related compounds. Pharmacol Rev. 1997 Mar;49(1):53–98. [PubMed] [Google Scholar]
  27. Takeshima H., Nishimura S., Nishi M., Ikeda M., Sugimoto T. A brain-specific transcript from the 3'-terminal region of the skeletal muscle ryanodine receptor gene. FEBS Lett. 1993 May 10;322(2):105–110. doi: 10.1016/0014-5793(93)81547-d. [DOI] [PubMed] [Google Scholar]
  28. Thorn P., Gerasimenko O., Petersen O. H. Cyclic ADP-ribose regulation of ryanodine receptors involved in agonist evoked cytosolic Ca2+ oscillations in pancreatic acinar cells. EMBO J. 1994 May 1;13(9):2038–2043. doi: 10.1002/j.1460-2075.1994.tb06478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thulin A. Motor and secretory effects of nerves on the parotid gland of rat. Acta Physiol Scand. 1976 Apr;96(4):506–511. doi: 10.1111/j.1748-1716.1976.tb10221.x. [DOI] [PubMed] [Google Scholar]
  30. Tojyo Y., Tanimura A., Matsumoto Y. Imaging of intracellular Ca2+ waves induced by muscarinic receptor stimulation in rat parotid acinar cells. Cell Calcium. 1997 Dec;22(6):455–462. doi: 10.1016/s0143-4160(97)90073-7. [DOI] [PubMed] [Google Scholar]
  31. Wilson B. S., Pfeiffer J. R., Smith A. J., Oliver J. M., Oberdorf J. A., Wojcikiewicz R. J. Calcium-dependent clustering of inositol 1,4,5-trisphosphate receptors. Mol Biol Cell. 1998 Jun;9(6):1465–1478. doi: 10.1091/mbc.9.6.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wojcikiewicz R. J. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem. 1995 May 12;270(19):11678–11683. doi: 10.1074/jbc.270.19.11678. [DOI] [PubMed] [Google Scholar]
  33. Yoshida Y., Imai S. Structure and function of inositol 1,4,5-trisphosphate receptor. Jpn J Pharmacol. 1997 Jun;74(2):125–137. doi: 10.1254/jjp.74.125. [DOI] [PubMed] [Google Scholar]
  34. Yule D. I., Ernst S. A., Ohnishi H., Wojcikiewicz R. J. Evidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5-trisphosphate receptors in pancreatic acinar cells. J Biol Chem. 1997 Apr 4;272(14):9093–9098. doi: 10.1074/jbc.272.14.9093. [DOI] [PubMed] [Google Scholar]
  35. Yule D. I., Stuenkel E., Williams J. A. Intercellular calcium waves in rat pancreatic acini: mechanism of transmission. Am J Physiol. 1996 Oct;271(4 Pt 1):C1285–C1294. doi: 10.1152/ajpcell.1996.271.4.C1285. [DOI] [PubMed] [Google Scholar]
  36. Zhang X., Wen J., Bidasee K. R., Besch H. R., Jr, Rubin R. P. Ryanodine receptor expression is associated with intracellular Ca2+ release in rat parotid acinar cells. Am J Physiol. 1997 Oct;273(4 Pt 1):C1306–C1314. doi: 10.1152/ajpcell.1997.273.4.C1306. [DOI] [PubMed] [Google Scholar]
  37. Zimanyi I., Pessah I. N. Pharmacological characterization of the specific binding of [3H]ryanodine to rat brain microsomal membranes. Brain Res. 1991 Oct 11;561(2):181–191. doi: 10.1016/0006-8993(91)91594-q. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES