Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jun 1;340(Pt 2):539–548.

Hypochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation.

C L Hawkins 1, M J Davies 1
PMCID: PMC1220282  PMID: 10333500

Abstract

Activated phagocyte cells generate hypochlorite (HOCl) via the release of H2O2 and the enzyme myeloperoxidase. Plasma proteins are major targets for HOCl, although little information is available about the mechanism(s) of oxidation. In this study the reaction of HOCl (at least 50 microM) with diluted fresh human plasma has been shown to generate material that oxidizes 5-thio-2-nitrobenzoic acid; these oxidants are believed to be chloramines formed from the reaction of HOCl with protein amine groups. Chloramines have also been detected with isolated plasma proteins treated with HOCl. In both cases chloramine formation accounts for approx. 20-30% of the added HOCl. These chloramines decompose in a time-dependent manner when incubated at 20 or 37 degrees C but not at 4 degrees C. Ascorbate and urate remove these chloramines in a time- and concentration-dependent manner, with the former being more efficient. The reaction of fresh diluted plasma with HOCl also gives rise to protein-derived nitrogen-centred radicals in a time- and HOCl-concentration-dependent manner; these have been detected by EPR spin trapping. Identical radicals have been detected with isolated HOCl-treated plasma proteins. Radical formation was inhibited by excess methionine, implicating protein-derived chloramines (probably from lysine side chains) as the radical source. Plasma protein fragmentation occurs in a time- and HOCl-concentration-dependent manner, as evidenced by the increased mobility of the EPR spin adducts, the detection of further radical species believed to be intermediates in protein degradation and the loss of the parent protein bands on SDS/PAGE. Fragmentation can be inhibited by methionine and other agents (ascorbate, urate, Trolox C or GSH) capable of removing chloramines and reactive radicals. These results are consistent with protein-derived chloramines, and the radicals derived from them, as contributing agents in HOCl-induced plasma protein oxidation.

Full Text

The Full Text of this article is available as a PDF (225.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnhold J., Hammerschmidt S., Arnold K. Role of functional groups of human plasma and luminol in scavenging of NaOCl and neutrophil-derived hypochlorous acid. Biochim Biophys Acta. 1991 Sep 23;1097(2):145–151. doi: 10.1016/0925-4439(91)90099-u. [DOI] [PubMed] [Google Scholar]
  2. Arnhold J., Hammerschmidt S., Wagner M., Mueller S., Arnold K., Grimm E. On the action of hypochlorite on human serum albumin. Biomed Biochim Acta. 1990;49(10):991–997. [PubMed] [Google Scholar]
  3. Arnhold J., Wiegel D., Richter O., Hammerschmidt S., Arnold K., Krumbiegel M. Modification of low density lipoproteins by sodium hypochlorite. Biomed Biochim Acta. 1991;50(8):967–973. [PubMed] [Google Scholar]
  4. Aruoma O. I., Halliwell B. Action of hypochlorous acid on the antioxidant protective enzymes superoxide dismutase, catalase and glutathione peroxidase. Biochem J. 1987 Dec 15;248(3):973–976. doi: 10.1042/bj2480973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker R. W. Studies on the reaction between sodium hypochlorite and proteins: 1. Physico-chemical study of the course of the reaction. Biochem J. 1947;41(3):337–342. [PMC free article] [PubMed] [Google Scholar]
  6. Beck-Speier I., Leuschel L., Luippold G., Maier K. L. Proteins released from stimulated neutrophils contain very high levels of oxidized methionine. FEBS Lett. 1988 Jan 18;227(1):1–4. doi: 10.1016/0014-5793(88)81401-7. [DOI] [PubMed] [Google Scholar]
  7. Carr A. C., Winterbourn C. C. Oxidation of neutrophil glutathione and protein thiols by myeloperoxidase-derived hypochlorous acid. Biochem J. 1997 Oct 1;327(Pt 1):275–281. doi: 10.1042/bj3270275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clark R. A., Stone P. J., El Hag A., Calore J. D., Franzblau C. Myeloperoxidase-catalyzed inactivation of alpha 1-protease inhibitor by human neutrophils. J Biol Chem. 1981 Apr 10;256(7):3348–3353. [PubMed] [Google Scholar]
  9. Clark R. A., Szot S., Williams M. A., Kagan H. M. Oxidation of lysine side-chains of elastin by the myeloperoxidase system and by stimulated human neutrophils. Biochem Biophys Res Commun. 1986 Mar 13;135(2):451–457. doi: 10.1016/0006-291x(86)90015-x. [DOI] [PubMed] [Google Scholar]
  10. Daugherty A., Dunn J. L., Rateri D. L., Heinecke J. W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994 Jul;94(1):437–444. doi: 10.1172/JCI117342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davies M. J., Forni L. G., Shuter S. L. Electron spin resonance and pulse radiolysis studies on the spin trapping of sulphur-centered radicals. Chem Biol Interact. 1987 Feb;61(2):177–188. doi: 10.1016/0009-2797(87)90038-x. [DOI] [PubMed] [Google Scholar]
  12. Davies M. J., Gilbert B. C., Haywood R. M. Radical-induced damage to proteins: e.s.r. spin-trapping studies. Free Radic Res Commun. 1991;15(2):111–127. doi: 10.3109/10715769109049131. [DOI] [PubMed] [Google Scholar]
  13. Domigan N. M., Charlton T. S., Duncan M. W., Winterbourn C. C., Kettle A. J. Chlorination of tyrosyl residues in peptides by myeloperoxidase and human neutrophils. J Biol Chem. 1995 Jul 14;270(28):16542–16548. doi: 10.1074/jbc.270.28.16542. [DOI] [PubMed] [Google Scholar]
  14. Duling D. R. Simulation of multiple isotropic spin-trap EPR spectra. J Magn Reson B. 1994 Jun;104(2):105–110. doi: 10.1006/jmrb.1994.1062. [DOI] [PubMed] [Google Scholar]
  15. Fliss H. Oxidation of proteins in rat heart and lungs by polymorphonuclear leukocyte oxidants. Mol Cell Biochem. 1988 Dec;84(2):177–188. doi: 10.1007/BF00421053. [DOI] [PubMed] [Google Scholar]
  16. Folkes L. K., Candeias L. P., Wardman P. Kinetics and mechanisms of hypochlorous acid reactions. Arch Biochem Biophys. 1995 Oct 20;323(1):120–126. doi: 10.1006/abbi.1995.0017. [DOI] [PubMed] [Google Scholar]
  17. Halliwell B., Wasil M., Grootveld M. Biologically significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. Implications for antioxidant protection in the inflamed rheumatoid joint. FEBS Lett. 1987 Mar 9;213(1):15–17. doi: 10.1016/0014-5793(87)81456-4. [DOI] [PubMed] [Google Scholar]
  18. Hawkins C. L., Davies M. J. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation. Biochem J. 1998 Jun 15;332(Pt 3):617–625. doi: 10.1042/bj3320617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hazell L. J., Arnold L., Flowers D., Waeg G., Malle E., Stocker R. Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest. 1996 Mar 15;97(6):1535–1544. doi: 10.1172/JCI118576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hazell L. J., Davies M. J., Stocker R. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins. Biochem J. 1999 May 1;339(Pt 3):489–495. [PMC free article] [PubMed] [Google Scholar]
  21. Hazell L. J., Stocker R. Alpha-tocopherol does not inhibit hypochlorite-induced oxidation of apolipoprotein B-100 of low-density lipoprotein. FEBS Lett. 1997 Sep 15;414(3):541–544. doi: 10.1016/s0014-5793(97)01066-1. [DOI] [PubMed] [Google Scholar]
  22. Hazell L. J., van den Berg J. J., Stocker R. Oxidation of low-density lipoprotein by hypochlorite causes aggregation that is mediated by modification of lysine residues rather than lipid oxidation. Biochem J. 1994 Aug 15;302(Pt 1):297–304. doi: 10.1042/bj3020297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hazen S. L., Crowley J. R., Mueller D. M., Heinecke J. W. Mass spectrometric quantification of 3-chlorotyrosine in human tissues with attomole sensitivity: a sensitive and specific marker for myeloperoxidase-catalyzed chlorination at sites of inflammation. Free Radic Biol Med. 1997;23(6):909–916. doi: 10.1016/s0891-5849(97)00084-1. [DOI] [PubMed] [Google Scholar]
  24. Hazen S. L., Heinecke J. W. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997 May 1;99(9):2075–2081. doi: 10.1172/JCI119379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Heinecke J. W., Li W., Daehnke H. L., 3rd, Goldstein J. A. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J Biol Chem. 1993 Feb 25;268(6):4069–4077. [PubMed] [Google Scholar]
  26. Hu M. L., Louie S., Cross C. E., Motchnik P., Halliwell B. Antioxidant protection against hypochlorous acid in human plasma. J Lab Clin Med. 1993 Feb;121(2):257–262. [PubMed] [Google Scholar]
  27. Jolivalt C., Leininger-Muller B., Drozdz R., Naskalski J. W., Siest G. Apolipoprotein E is highly susceptible to oxidation by myeloperoxidase, an enzyme present in the brain. Neurosci Lett. 1996 May 24;210(1):61–64. doi: 10.1016/0304-3940(96)12661-6. [DOI] [PubMed] [Google Scholar]
  28. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  29. Matheson N. R., Travis J. Differential effects of oxidizing agents on human plasma alpha 1-proteinase inhibitor and human neutrophil myeloperoxidase. Biochemistry. 1985 Apr 9;24(8):1941–1945. doi: 10.1021/bi00329a021. [DOI] [PubMed] [Google Scholar]
  30. Selvaraj R. J., Paul B. B., Strauss R. R., Jacobs A. A., Sbarra A. J. Oxidative peptide cleavage and decarboxylation by the MPO-H2O2-Cl- antimicrobial system. Infect Immun. 1974 Feb;9(2):255–260. doi: 10.1128/iai.9.2.255-260.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stelmaszyńska T., Zgliczynski J. M. N-(2-Oxoacyl)amino acids and nitriles as final products of dipeptide chlorination mediated by the myeloperoxidase/H2O2/Cl- system. Eur J Biochem. 1978 Dec 1;92(1):301–308. doi: 10.1111/j.1432-1033.1978.tb12748.x. [DOI] [PubMed] [Google Scholar]
  32. Stocker R., Peterhans E. Antioxidant properties of conjugated bilirubin and biliverdin: biologically relevant scavenging of hypochlorous acid. Free Radic Res Commun. 1989;6(1):57–66. doi: 10.3109/10715768909073428. [DOI] [PubMed] [Google Scholar]
  33. Thomas E. L., Bozeman P. M., Jefferson M. M., King C. C. Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromamines. J Biol Chem. 1995 Feb 17;270(7):2906–2913. doi: 10.1074/jbc.270.7.2906. [DOI] [PubMed] [Google Scholar]
  34. Thomas E. L., Grisham M. B., Jefferson M. M. Preparation and characterization of chloramines. Methods Enzymol. 1986;132:569–585. doi: 10.1016/s0076-6879(86)32042-1. [DOI] [PubMed] [Google Scholar]
  35. Thomas E. L. Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli. Infect Immun. 1979 Feb;23(2):522–531. doi: 10.1128/iai.23.2.522-531.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vissers M. C., Winterbourn C. C. Oxidation of intracellular glutathione after exposure of human red blood cells to hypochlorous acid. Biochem J. 1995 Apr 1;307(Pt 1):57–62. doi: 10.1042/bj3070057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vissers M. C., Winterbourn C. C. Oxidative damage to fibronectin. I. The effects of the neutrophil myeloperoxidase system and HOCl. Arch Biochem Biophys. 1991 Feb 15;285(1):53–59. doi: 10.1016/0003-9861(91)90327-f. [DOI] [PubMed] [Google Scholar]
  38. Weiss S. J., Lampert M. B., Test S. T. Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science. 1983 Nov 11;222(4624):625–628. doi: 10.1126/science.6635660. [DOI] [PubMed] [Google Scholar]
  39. Weiss S. J., LoBuglio A. F. Phagocyte-generated oxygen metabolites and cellular injury. Lab Invest. 1982 Jul;47(1):5–18. [PubMed] [Google Scholar]
  40. Winterbourn C. C., Brennan S. O. Characterization of the oxidation products of the reaction between reduced glutathione and hypochlorous acid. Biochem J. 1997 Aug 15;326(Pt 1):87–92. doi: 10.1042/bj3260087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Winterbourn C. C. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta. 1985 Jun 18;840(2):204–210. doi: 10.1016/0304-4165(85)90120-5. [DOI] [PubMed] [Google Scholar]
  42. Witting P. K., Westerlund C., Stocker R. A rapid and simple screening test for potential inhibitors of tocopherol-mediated peroxidation of LDL lipids. J Lipid Res. 1996 Apr;37(4):853–867. [PubMed] [Google Scholar]
  43. Wright N. C. The Action of Hypochlorites on Amino-Acids and Proteins. Biochem J. 1926;20(3):524–532. doi: 10.1042/bj0200524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. YAMAZAKI I., MASON H. S., PIETTE L. Identification, by electron paramagnetic resonance spectroscopy, of free radicals generated from substrates by peroxidase. J Biol Chem. 1960 Aug;235:2444–2449. [PubMed] [Google Scholar]
  45. Yan L. J., Traber M. G., Kobuchi H., Matsugo S., Tritschler H. J., Packer L. Efficacy of hypochlorous acid scavengers in the prevention of protein carbonyl formation. Arch Biochem Biophys. 1996 Mar 15;327(2):330–334. doi: 10.1006/abbi.1996.0130. [DOI] [PubMed] [Google Scholar]
  46. Yang C. Y., Gu Z. W., Yang H. X., Yang M., Gotto A. M., Jr, Smith C. V. Oxidative modifications of apoB-100 by exposure of low density lipoproteins to HOCL in vitro. Free Radic Biol Med. 1997;23(1):82–89. doi: 10.1016/s0891-5849(96)00624-7. [DOI] [PubMed] [Google Scholar]
  47. Yang C. Y., Gu Z. W., Yang H. X., Yang M., Wiseman W. S., Rogers L. K., Welty S. E., Katta V., Rohde M. F., Smith C. V. Oxidation of bovine beta-casein by hypochlorite. Free Radic Biol Med. 1997;22(7):1235–1240. doi: 10.1016/s0891-5849(96)00551-5. [DOI] [PubMed] [Google Scholar]
  48. Zgliczyński J. M., Stelmaszyńska T., Domański J., Ostrowski W. Chloramines as intermediates of oxidation reaction of amino acids by myeloperoxidase. Biochim Biophys Acta. 1971 Jun 16;235(3):419–424. doi: 10.1016/0005-2744(71)90281-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES