Abstract
Indole-3-acetic acid (IAA) can be oxidized via two mechanisms: a conventional hydrogen-peroxide-dependent pathway, and one that is hydrogen-peroxide-independent and requires oxygen. It has been shown here for the first time that only plant peroxidases are able to catalyse the reaction of IAA oxidation with molecular oxygen. Cytochrome c peroxidase (CcP), fungal peroxidases (manganese-dependent peroxidase, lignin peroxidase and Arthromyces ramosus peroxidase) and microperoxidase were essentially inactive towards IAA in the absence of added H2O2. An analysis of amino acid sequences allowed five structurally similar fragments to be identified in auxin-binding proteins and plant peroxidases. The corresponding fragments in CcP and fungal peroxidases showed no similarity with auxin-binding proteins. Five structurally similar fragments form a subdomain including the catalytic centre and two residues highly conserved among 'classical' plant peroxidases only, namely His-40 and Trp-117. The subdomain identified above with the two residues might be responsible for the oxidation of the physiological substrate of classical plant peroxidases, IAA.
Full Text
The Full Text of this article is available as a PDF (176.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Finzel B. C., Poulos T. L., Kraut J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J Biol Chem. 1984 Nov 10;259(21):13027–13036. [PubMed] [Google Scholar]
- Gajhede M., Schuller D. J., Henriksen A., Smith A. T., Poulos T. L. Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nat Struct Biol. 1997 Dec;4(12):1032–1038. doi: 10.1038/nsb1297-1032. [DOI] [PubMed] [Google Scholar]
- Gazarian I. G., Lagrimini L. M. Anaerobic stopped-flow studies of indole-3-acetic acid oxidation by dioxygen catalysed by horseradish C and anionic tobacco peroxidase at neutral pH: catalase effect. Biophys Chem. 1998 Jun 9;72(3):231–237. doi: 10.1016/s0301-4622(98)00098-2. [DOI] [PubMed] [Google Scholar]
- Gazarian I. G., Lagrimini L. M., Mellon F. A., Naldrett M. J., Ashby G. A., Thorneley R. N. Identification of skatolyl hydroperoxide and its role in the peroxidase-catalysed oxidation of indol-3-yl acetic acid. Biochem J. 1998 Jul 1;333(Pt 1):223–232. doi: 10.1042/bj3330223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gazaryan I. G., Lagrimini L. M., Ashby G. A., Thorneley R. N. Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem J. 1996 Feb 1;313(Pt 3):841–847. doi: 10.1042/bj3130841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gazaryan I. G., Lagrimini L. M. Purification and unusual kinetic properties of a tobacco anionic peroxidase. Phytochemistry. 1996 Mar;41(4):1029–1034. doi: 10.1016/0031-9422(95)00779-2. [DOI] [PubMed] [Google Scholar]
- HINMAN R. L., LANG J. PEROXIDASE-CATALYZED OXIDATION OF INDOLE-3-ACETIC ACID. Biochemistry. 1965 Jan;4:144–158. doi: 10.1021/bi00877a023. [DOI] [PubMed] [Google Scholar]
- Klotz K. L., Lagrimini L. M. Phytohormone control of the tobacco anionic peroxidase promoter. Plant Mol Biol. 1996 Jun;31(3):565–573. doi: 10.1007/BF00042229. [DOI] [PubMed] [Google Scholar]
- Krylov S. N., Brian Dunford H. Evidence for a free radical chain mechanism in the reaction between peroxidase and indole-3-acetic acid at neutral pH. Biophys Chem. 1996 Feb 8;58(3):325–334. doi: 10.1016/0301-4622(95)00102-6. [DOI] [PubMed] [Google Scholar]
- Kunishima N., Fukuyama K., Matsubara H., Hatanaka H., Shibano Y., Amachi T. Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 A resolution. Structural comparisons with the lignin and cytochrome c peroxidases. J Mol Biol. 1994 Jan 7;235(1):331–344. doi: 10.1016/s0022-2836(05)80037-3. [DOI] [PubMed] [Google Scholar]
- Lambeir A. M., Markey C. M., Dunford H. B., Marnett L. J. Spectral properties of the higher oxidation states of prostaglandin H synthase. J Biol Chem. 1985 Dec 5;260(28):14894–14896. [PubMed] [Google Scholar]
- Petersen J. F., Kadziola A., Larsen S. Three-dimensional structure of a recombinant peroxidase from Coprinus cinereus at 2.6 A resolution. FEBS Lett. 1994 Feb 21;339(3):291–296. doi: 10.1016/0014-5793(94)80433-8. [DOI] [PubMed] [Google Scholar]
- Picot D., Loll P. J., Garavito R. M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature. 1994 Jan 20;367(6460):243–249. doi: 10.1038/367243a0. [DOI] [PubMed] [Google Scholar]
- Poulos T. L., Edwards S. L., Wariishi H., Gold M. H. Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem. 1993 Feb 25;268(6):4429–4440. doi: 10.2210/pdb1lga/pdb. [DOI] [PubMed] [Google Scholar]
- Schuller D. J., Ban N., Huystee R. B., McPherson A., Poulos T. L. The crystal structure of peanut peroxidase. Structure. 1996 Mar 15;4(3):311–321. doi: 10.1016/s0969-2126(96)00035-4. [DOI] [PubMed] [Google Scholar]
- Sundaramoorthy M., Kishi K., Gold M. H., Poulos T. L. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem. 1994 Dec 30;269(52):32759–32767. [PubMed] [Google Scholar]
- Ushijima Y., Nakano M., Takyu C., Inaba H. Chemiluminescence in L-tyrosine-H2O2-horseradish peroxidase system: possible formation of tyrosine cation radical. Biochem Biophys Res Commun. 1985 Apr 30;128(2):936–941. doi: 10.1016/0006-291x(85)90136-6. [DOI] [PubMed] [Google Scholar]