Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jun 15;340(Pt 3):631–638.

Colicin E1 forms a dimer after urea-induced unfolding.

B A Steer 1, A A DiNardo 1, A R Merrill 1
PMCID: PMC1220293  PMID: 10359646

Abstract

Unfolding of the soluble colicin E1 channel peptide was examined with the use of urea as a denaturant; it was shown that it unfolds to an intermediate state in 8.5 M urea, equivalent to a dimeric species previously observed in 4 M guanidinium chloride. Single tryptophan residues, substituted into the peptide at various positions by site-directed mutagenesis, were employed as fluorescent probes of local unfolding. Unfolding profiles for specific sites within the peptide were obtained by quantifying the shifts in the fluorescence emission maxima of single tryptophan residues on unfolding and plotting them against urea concentration. Unfolding reported by tryptophan residues in the C-terminal region was not characteristic of complete peptide denaturation, as evidenced by the relatively blue-shifted values of the fluorescence emission maxima. Unfolding was also monitored by using CD spectroscopy and the fluorescent probe 2-(p-toluidinyl)-naphthalene 6-sulphonic acid; the results indicated that unfolding of helices is concomitant with the exposure of protein non-polar surface. Unfolding profiles were evaluated by non-linear least-squares curve fitting and calculation of the unfolding transition midpoint. The unfolding profiles of residues located in the N-terminal region of the peptide had lower transition midpoints than residues in the C-terminal portion. The results of unfolding analysis demonstrated that urea unfolds the peptide only partly to an intermediate state, because the C-terminal portion of the channel peptide retained significant structure in 8.5 M urea. Characterization of the peptide's global unfolding by size-exclusion HPLC revealed that the partly denatured structure that persists in 8.5 M urea is a dimer of two channel peptides, tightly associated by hydrophobic interactions. The presence of the dimerized species was confirmed by SDS/PAGE and intermolecular fluorescence resonance energy transfer.

Full Text

The Full Text of this article is available as a PDF (218.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beattie B. K., Merrill A. R. In vitro enzyme activation and folded stability of Pseudomonas aeruginosa exotoxin A and its C-terminal peptide. Biochemistry. 1996 Jul 16;35(28):9042–9051. doi: 10.1021/bi960396k. [DOI] [PubMed] [Google Scholar]
  2. Breslow R., Guo T. Surface tension measurements show that chaotropic salting-in denaturants are not just water-structure breakers. Proc Natl Acad Sci U S A. 1990 Jan;87(1):167–169. doi: 10.1073/pnas.87.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bruggemann E. P., Kayalar C. Determination of the molecularity of the colicin E1 channel by stopped-flow ion flux kinetics. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4273–4276. doi: 10.1073/pnas.83.12.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bullock J. O., Cohen F. S., Dankert J. R., Cramer W. A. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide. J Biol Chem. 1983 Aug 25;258(16):9908–9912. [PubMed] [Google Scholar]
  5. Cleland J. L., Wang D. I. Refolding and aggregation of bovine carbonic anhydrase B: quasi-elastic light scattering analysis. Biochemistry. 1990 Dec 18;29(50):11072–11078. doi: 10.1021/bi00502a009. [DOI] [PubMed] [Google Scholar]
  6. Cramer W. A., Dankert J. R., Uratani Y. The membrane channel-forming bacteriocidal protein, colicin El. Biochim Biophys Acta. 1983 Mar 21;737(1):173–193. doi: 10.1016/0304-4157(83)90016-3. [DOI] [PubMed] [Google Scholar]
  7. Cramer W. A., Heymann J. B., Schendel S. L., Deriy B. N., Cohen F. S., Elkins P. A., Stauffacher C. V. Structure-function of the channel-forming colicins. Annu Rev Biophys Biomol Struct. 1995;24:611–641. doi: 10.1146/annurev.bb.24.060195.003143. [DOI] [PubMed] [Google Scholar]
  8. De Young L. R., Dill K. A., Fink A. L. Aggregation and denaturation of apomyoglobin in aqueous urea solutions. Biochemistry. 1993 Apr 20;32(15):3877–3886. doi: 10.1021/bi00066a006. [DOI] [PubMed] [Google Scholar]
  9. Elkins P., Bunker A., Cramer W. A., Stauffacher C. V. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Structure. 1997 Mar 15;5(3):443–458. doi: 10.1016/s0969-2126(97)00200-1. [DOI] [PubMed] [Google Scholar]
  10. Hibbard L. S., Tulinsky A. Expression of functionality of alpha-chymotrypsin. Effects of guanidine hydrochloride and urea in the onset of denaturation. Biochemistry. 1978 Dec 12;17(25):5460–5468. doi: 10.1021/bi00618a021. [DOI] [PubMed] [Google Scholar]
  11. Levinthal F., Todd A. P., Hubbell W. L., Levinthal C. A single tryptic fragment of colicin E1 can form an ion channel: stoichiometry confirms kinetics. Proteins. 1991;11(4):254–262. doi: 10.1002/prot.340110404. [DOI] [PubMed] [Google Scholar]
  12. Merrill A. R., Cohen F. S., Cramer W. A. On the nature of the structural change of the colicin E1 channel peptide necessary for its translocation-competent state. Biochemistry. 1990 Jun 19;29(24):5829–5836. doi: 10.1021/bi00476a026. [DOI] [PubMed] [Google Scholar]
  13. Merrill A. R., Palmer L. R., Szabo A. G. Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin E1 channel peptide. Structural characterization of the insertion-competent state. Biochemistry. 1993 Jul 13;32(27):6974–6981. doi: 10.1021/bi00078a023. [DOI] [PubMed] [Google Scholar]
  14. Monera O. D., Kay C. M., Hodges R. S. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Sci. 1994 Nov;3(11):1984–1991. doi: 10.1002/pro.5560031110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Palmer L. R., Merrill A. R. Mapping the membrane topology of the closed state of the colicin E1 channel. J Biol Chem. 1994 Feb 11;269(6):4187–4193. [PubMed] [Google Scholar]
  16. Peterson A. A., Cramer W. A. Voltage-dependent, monomeric channel activity of colicin E1 in artificial membrane vesicles. J Membr Biol. 1987;99(3):197–204. doi: 10.1007/BF01995700. [DOI] [PubMed] [Google Scholar]
  17. Rath P., Bousché O., Merrill A. R., Cramer W. A., Rothschild K. J. Fourier transform infrared evidence for a predominantly alpha-helical structure of the membrane bound channel forming COOH-terminal peptide of colicin E1. Biophys J. 1991 Mar;59(3):516–522. doi: 10.1016/S0006-3495(91)82268-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Royer C. A., Mann C. J., Matthews C. R. Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants. Protein Sci. 1993 Nov;2(11):1844–1852. doi: 10.1002/pro.5560021106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schendel S. L., Cramer W. A. On the nature of the unfolded intermediate in the in vitro transition of the colicin E1 channel domain from the aqueous to the membrane phase. Protein Sci. 1994 Dec;3(12):2272–2279. doi: 10.1002/pro.5560031212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shin Y. K., Levinthal C., Levinthal F., Hubbell W. L. Colicin E1 binding to membranes: time-resolved studies of spin-labeled mutants. Science. 1993 Feb 12;259(5097):960–963. doi: 10.1126/science.8382373. [DOI] [PubMed] [Google Scholar]
  21. Song H. Y., Cohen F. S., Cramer W. A. Membrane topography of ColE1 gene products: the hydrophobic anchor of the colicin E1 channel is a helical hairpin. J Bacteriol. 1991 May;173(9):2927–2934. doi: 10.1128/jb.173.9.2927-2934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Steer B. A., Merrill A. R. Characterization of an unfolding intermediate and kinetic analysis of guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide. Biochemistry. 1997 Mar 11;36(10):3037–3046. doi: 10.1021/bi961926f. [DOI] [PubMed] [Google Scholar]
  23. Steer B. A., Merrill A. R. Guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide: unfolding of local segments using genetically substituted tryptophan residues. Biochemistry. 1995 May 30;34(21):7225–7233. doi: 10.1021/bi00021a038. [DOI] [PubMed] [Google Scholar]
  24. Steer B. A., Merrill A. R. The colicin E1 insertion-competent state: detection of structural changes using fluorescence resonance energy transfer. Biochemistry. 1994 Feb 8;33(5):1108–1115. doi: 10.1021/bi00171a009. [DOI] [PubMed] [Google Scholar]
  25. Strickland D. K., Larsson L. J., Neuenschwander D. E., Björk I. Reaction of proteinases with alpha 2-macroglobulin: rapid-kinetic evidence for a conformational rearrangement of the initial alpha 2-macroglobulin-trypsin complex. Biochemistry. 1991 Mar 19;30(11):2797–2803. doi: 10.1021/bi00225a009. [DOI] [PubMed] [Google Scholar]
  26. Tominaga N., Jameson D. M., Uyeda K. Reversible unfolding of fructose 6-phosphate, 2-kinase:fructose 2,6-bisphosphatase. Protein Sci. 1994 Aug;3(8):1245–1252. doi: 10.1002/pro.5560030810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Veatch W., Stryer L. The dimeric nature of the gramicidin A transmembrane channel: conductance and fluorescence energy transfer studies of hybrid channels. J Mol Biol. 1977 Jun 15;113(1):89–102. doi: 10.1016/0022-2836(77)90042-0. [DOI] [PubMed] [Google Scholar]
  28. Wendt L. Mechanism of colicin action: early events. J Bacteriol. 1970 Dec;104(3):1236–1241. doi: 10.1128/jb.104.3.1236-1241.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wetlaufer D. B., Xie Y. Control of aggregation in protein refolding: a variety of surfactants promote renaturation of carbonic anhydrase II. Protein Sci. 1995 Aug;4(8):1535–1543. doi: 10.1002/pro.5560040811. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES