Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jun 15;340(Pt 3):657–669.

Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle.

R I Viner 1, D A Ferrington 1, T D Williams 1, D J Bigelow 1, C Schöneich 1
PMCID: PMC1220296  PMID: 10359649

Abstract

The accumulation of covalently modified proteins is an important hallmark of biological aging, but relatively few studies have addressed the detailed molecular-chemical changes and processes responsible for the modification of specific protein targets. Recently, Narayanan et al. [Narayanan, Jones, Xu and Yu (1996) Am. J. Physiol. 271, C1032-C1040] reported that the effects of aging on skeletal-muscle function are muscle-specific, with a significant age-dependent change in ATP-supported Ca2+-uptake activity for slow-twitch but not for fast-twitch muscle. Here we have characterized in detail the age-dependent functional and chemical modifications of the rat skeletal-muscle sarcoplasmic-reticulum (SR) Ca2+-ATPase isoforms SERCA1 and SERCA2a from fast-twitch and slow-twitch muscle respectively. We find a significant age-dependent loss in the Ca2+-ATPase activity (26% relative to Ca2+-ATPase content) and Ca2+-uptake rate specifically in SR isolated from predominantly slow-twitch, but not from fast-twitch, muscles. Western immunoblotting and amino acid analysis demonstrate that, selectively, the SERCA2a isoform progressively accumulates a significant amount of nitrotyrosine with age (approximately 3.5+/-0. 7 mol/mol of SR Ca2+-ATPase). Both Ca2+-ATPase isoforms suffer an age-dependent loss of reduced cysteine which is, however, functionally insignificant. In vitro, the incubation of fast- and slow-twitch muscle SR with peroxynitrite (ONOO-) (but not NO/O2) results in the selective nitration only of the SERCA2a, suggesting that ONOO- may be the source of the nitrating agent in vivo. A correlation of the SR Ca2+-ATPase activity and covalent protein modifications in vitro and in vivo suggests that tyrosine nitration may affect the Ca2+-ATPase activity. By means of partial and complete proteolytic digestion of purified SERCA2a with trypsin or Staphylococcus aureus V8 protease, followed by Western-blot, amino acid and HPLC-electrospray-MS (ESI-MS) analysis, we localized a large part of the age-dependent tyrosine nitration to the sequence Tyr294-Tyr295 in the M4-M8 transmembrane domain of the SERCA2a, close to sites essential for Ca2+ translocation.

Full Text

The Full Text of this article is available as a PDF (288.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen J. P., Vilsen B., Nielsen H., Møller J. V. Characterization of detergent-solubilized sarcoplasmic reticulum Ca2+-ATPase by high-performance liquid chromatography. Biochemistry. 1986 Oct 21;25(21):6439–6447. doi: 10.1021/bi00369a015. [DOI] [PubMed] [Google Scholar]
  2. Barrabin H., Scofano H. M., Inesi G. Adenosinetriphosphatase site stoichiometry in sarcoplasmic reticulum vesicles and purified enzyme. Biochemistry. 1984 Mar 27;23(7):1542–1548. doi: 10.1021/bi00302a031. [DOI] [PubMed] [Google Scholar]
  3. Beckman J. S. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol. 1996 Jul-Aug;9(5):836–844. doi: 10.1021/tx9501445. [DOI] [PubMed] [Google Scholar]
  4. Brandl C. J., Green N. M., Korczak B., MacLennan D. H. Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell. 1986 Feb 28;44(4):597–607. doi: 10.1016/0092-8674(86)90269-2. [DOI] [PubMed] [Google Scholar]
  5. Brunelli L., Crow J. P., Beckman J. S. The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch Biochem Biophys. 1995 Jan 10;316(1):327–334. doi: 10.1006/abbi.1995.1044. [DOI] [PubMed] [Google Scholar]
  6. Cantilina T., Sagara Y., Inesi G., Jones L. R. Comparative studies of cardiac and skeletal sarcoplasmic reticulum ATPases. Effect of a phospholamban antibody on enzyme activation by Ca2+. J Biol Chem. 1993 Aug 15;268(23):17018–17025. [PubMed] [Google Scholar]
  7. Capanni C., Squarzoni S., Petrini S., Villanova M., Muscari C., Maraldi N. M., Guarnieri C., Caldarera C. M. Increase of neuronal nitric oxide synthase in rat skeletal muscle during ageing. Biochem Biophys Res Commun. 1998 Apr 7;245(1):216–219. doi: 10.1006/bbrc.1998.8404. [DOI] [PubMed] [Google Scholar]
  8. Chao D. S., Silvagno F., Xia H., Cornwell T. L., Lincoln T. M., Bredt D. S. Nitric oxide synthase and cyclic GMP-dependent protein kinase concentrated at the neuromuscular endplate. Neuroscience. 1997 Feb;76(3):665–672. doi: 10.1016/s0306-4522(96)00367-3. [DOI] [PubMed] [Google Scholar]
  9. Close R. I. Dynamic properties of mammalian skeletal muscles. Physiol Rev. 1972 Jan;52(1):129–197. doi: 10.1152/physrev.1972.52.1.129. [DOI] [PubMed] [Google Scholar]
  10. Crow J. P., Ischiropoulos H. Detection and quantitation of nitrotyrosine residues in proteins: in vivo marker of peroxynitrite. Methods Enzymol. 1996;269:185–194. doi: 10.1016/s0076-6879(96)69020-x. [DOI] [PubMed] [Google Scholar]
  11. Crow J. P., Ye Y. Z., Strong M., Kirk M., Barnes S., Beckman J. S. Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J Neurochem. 1997 Nov;69(5):1945–1953. doi: 10.1046/j.1471-4159.1997.69051945.x. [DOI] [PubMed] [Google Scholar]
  12. Dux L. Muscle relaxation and sarcoplasmic reticulum function in different muscle types. Rev Physiol Biochem Pharmacol. 1993;122:69–147. doi: 10.1007/BFb0035274. [DOI] [PubMed] [Google Scholar]
  13. Eiserich J. P., Hristova M., Cross C. E., Jones A. D., Freeman B. A., Halliwell B., van der Vliet A. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998 Jan 22;391(6665):393–397. doi: 10.1038/34923. [DOI] [PubMed] [Google Scholar]
  14. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  15. Ferrington D. A., Jones T. E., Qin Z., Miller-Schlyer M., Squier T. C., Bigelow D. J. Decreased conformational stability of the sarcoplasmic reticulum Ca-ATPase in aged skeletal muscle. Biochim Biophys Acta. 1997 Dec 4;1330(2):233–247. doi: 10.1016/s0005-2736(97)00158-2. [DOI] [PubMed] [Google Scholar]
  16. Ferrington D. A., Krainev A. G., Bigelow D. J. Altered turnover of calcium regulatory proteins of the sarcoplasmic reticulum in aged skeletal muscle. J Biol Chem. 1998 Mar 6;273(10):5885–5891. doi: 10.1074/jbc.273.10.5885. [DOI] [PubMed] [Google Scholar]
  17. Frandsen U., Lopez-Figueroa M., Hellsten Y. Localization of nitric oxide synthase in human skeletal muscle. Biochem Biophys Res Commun. 1996 Oct 3;227(1):88–93. doi: 10.1006/bbrc.1996.1472. [DOI] [PubMed] [Google Scholar]
  18. Gafni A., Yuh K. C. A comparative study of the Ca2+-Mg2+ dependent ATPase from skeletal muscles of young, adult and old rats. Mech Ageing Dev. 1989 Aug;49(2):105–117. doi: 10.1016/0047-6374(89)90094-8. [DOI] [PubMed] [Google Scholar]
  19. Gath I., Closs E. I., Gödtel-Armbrust U., Schmitt S., Nakane M., Wessler I., Förstermann U. Inducible NO synthase II and neuronal NO synthase I are constitutively expressed in different structures of guinea pig skeletal muscle: implications for contractile function. FASEB J. 1996 Dec;10(14):1614–1620. doi: 10.1096/fasebj.10.14.9002553. [DOI] [PubMed] [Google Scholar]
  20. Goldstein S., Czapski G. The reaction of NO. with O2.- and HO2.: a pulse radiolysis study. Free Radic Biol Med. 1995 Oct;19(4):505–510. doi: 10.1016/0891-5849(95)00034-u. [DOI] [PubMed] [Google Scholar]
  21. Grover A. K., Samson S. E., Misquitta C. M. Sarco(endo)plasmic reticulum Ca2+ pump isoform SERCA3 is more resistant than SERCA2b to peroxide. Am J Physiol. 1997 Aug;273(2 Pt 1):C420–C425. doi: 10.1152/ajpcell.1997.273.2.C420. [DOI] [PubMed] [Google Scholar]
  22. Grozdanovic Z., Nakos G., Dahrmann G., Mayer B., Gossrau R. Species-independent expression of nitric oxide synthase in the sarcolemma region of visceral and somatic striated muscle fibers. Cell Tissue Res. 1995 Sep;281(3):493–499. doi: 10.1007/BF00417866. [DOI] [PubMed] [Google Scholar]
  23. HARMAN D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956 Jul;11(3):298–300. doi: 10.1093/geronj/11.3.298. [DOI] [PubMed] [Google Scholar]
  24. Huang W. H., Wang Y., Askari A., Zolotarjova N., Ganjeizadeh M. Different sensitivities of the Na+/K(+)-ATPase isoforms to oxidants. Biochim Biophys Acta. 1994 Feb 23;1190(1):108–114. doi: 10.1016/0005-2736(94)90039-6. [DOI] [PubMed] [Google Scholar]
  25. Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  26. Ischiropoulos H., Zhu L., Chen J., Tsai M., Martin J. C., Smith C. D., Beckman J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys. 1992 Nov 1;298(2):431–437. doi: 10.1016/0003-9861(92)90431-u. [DOI] [PubMed] [Google Scholar]
  27. Kamisaki Y., Wada K., Bian K., Balabanli B., Davis K., Martin E., Behbod F., Lee Y. C., Murad F. An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11584–11589. doi: 10.1073/pnas.95.20.11584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kimura Y., Kurzydlowski K., Tada M., MacLennan D. H. Phospholamban regulates the Ca2+-ATPase through intramembrane interactions. J Biol Chem. 1996 Sep 6;271(36):21726–21731. doi: 10.1074/jbc.271.36.21726. [DOI] [PubMed] [Google Scholar]
  29. Kobzik L., Reid M. B., Bredt D. S., Stamler J. S. Nitric oxide in skeletal muscle. Nature. 1994 Dec 8;372(6506):546–548. doi: 10.1038/372546a0. [DOI] [PubMed] [Google Scholar]
  30. Krainev A. G., Ferrington D. A., Williams T. D., Squier T. C., Bigelow D. J. Adaptive changes in lipid composition of skeletal sarcoplasmic reticulum membranes associated with aging. Biochim Biophys Acta. 1995 May 4;1235(2):406–418. doi: 10.1016/0005-2736(95)80030-j. [DOI] [PubMed] [Google Scholar]
  31. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  32. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  33. Larsson L., Ansved T. Effects of ageing on the motor unit. Prog Neurobiol. 1995 Apr;45(5):397–458. doi: 10.1016/0301-0082(95)98601-z. [DOI] [PubMed] [Google Scholar]
  34. Larsson L., Salviati G. Effects of age on calcium transport activity of sarcoplasmic reticulum in fast- and slow-twitch rat muscle fibres. J Physiol. 1989 Dec;419:253–264. doi: 10.1113/jphysiol.1989.sp017872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Leeuwenburgh C., Fiebig R., Chandwaney R., Ji L. L. Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems. Am J Physiol. 1994 Aug;267(2 Pt 2):R439–R445. doi: 10.1152/ajpregu.1994.267.2.R439. [DOI] [PubMed] [Google Scholar]
  36. Leeuwenburgh C., Hansen P., Shaish A., Holloszy J. O., Heinecke J. W. Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats. Am J Physiol. 1998 Feb;274(2 Pt 2):R453–R461. doi: 10.1152/ajpregu.1998.274.2.R453. [DOI] [PubMed] [Google Scholar]
  37. Lompre A. M., de la Bastie D., Boheler K. R., Schwartz K. Characterization and expression of the rat heart sarcoplasmic reticulum Ca2+-ATPase mRNA. FEBS Lett. 1989 May 22;249(1):35–41. doi: 10.1016/0014-5793(89)80010-9. [DOI] [PubMed] [Google Scholar]
  38. Lymar S. V., Jiang Q., Hurst J. K. Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite. Biochemistry. 1996 Jun 18;35(24):7855–7861. doi: 10.1021/bi960331h. [DOI] [PubMed] [Google Scholar]
  39. MacLennan D. H., Rice W. J., Green N. M. The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J Biol Chem. 1997 Nov 14;272(46):28815–28818. doi: 10.1074/jbc.272.46.28815. [DOI] [PubMed] [Google Scholar]
  40. MacMillan-Crow L. A., Crow J. P., Kerby J. D., Beckman J. S., Thompson J. A. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11853–11858. doi: 10.1073/pnas.93.21.11853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Maragos C. M., Morley D., Wink D. A., Dunams T. M., Saavedra J. E., Hoffman A., Bove A. A., Isaac L., Hrabie J. A., Keefer L. K. Complexes of .NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. J Med Chem. 1991 Nov;34(11):3242–3247. doi: 10.1021/jm00115a013. [DOI] [PubMed] [Google Scholar]
  42. Marla S. S., Lee J., Groves J. T. Peroxynitrite rapidly permeates phospholipid membranes. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14243–14248. doi: 10.1073/pnas.94.26.14243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Møller J. V., Juul B., le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996 May 6;1286(1):1–51. doi: 10.1016/0304-4157(95)00017-8. [DOI] [PubMed] [Google Scholar]
  44. Nakane M., Schmidt H. H., Pollock J. S., Förstermann U., Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett. 1993 Jan 25;316(2):175–180. doi: 10.1016/0014-5793(93)81210-q. [DOI] [PubMed] [Google Scholar]
  45. Narayanan N., Jones D. L., Xu A., Yu J. C. Effects of aging on sarcoplasmic reticulum function and contraction duration in skeletal muscles of the rat. Am J Physiol. 1996 Oct;271(4 Pt 1):C1032–C1040. doi: 10.1152/ajpcell.1996.271.4.C1032. [DOI] [PubMed] [Google Scholar]
  46. Oh-Ishi S., Kizaki T., Yamashita H., Nagata N., Suzuki K., Taniguchi N., Ohno H. Alterations of superoxide dismutase iso-enzyme activity, content, and mRNA expression with aging in rat skeletal muscle. Mech Ageing Dev. 1995 Sep 29;84(1):65–76. doi: 10.1016/0047-6374(95)01637-f. [DOI] [PubMed] [Google Scholar]
  47. Ozols J. Amino acid analysis. Methods Enzymol. 1990;182:587–601. doi: 10.1016/0076-6879(90)82046-5. [DOI] [PubMed] [Google Scholar]
  48. Ploug M., Jensen A. L., Barkholt V. Determination of amino acid compositions and NH2-terminal sequences of peptides electroblotted onto PVDF membranes from tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis: application to peptide mapping of human complement component C3. Anal Biochem. 1989 Aug 15;181(1):33–39. doi: 10.1016/0003-2697(89)90390-4. [DOI] [PubMed] [Google Scholar]
  49. Pryor W. A., Cueto R., Jin X., Koppenol W. H., Ngu-Schwemlein M., Squadrito G. L., Uppu P. L., Uppu R. M. A practical method for preparing peroxynitrite solutions of low ionic strength and free of hydrogen peroxide. Free Radic Biol Med. 1995 Jan;18(1):75–83. doi: 10.1016/0891-5849(94)00105-s. [DOI] [PubMed] [Google Scholar]
  50. Prütz W. A., Mönig H., Butler J., Land E. J. Reactions of nitrogen dioxide in aqueous model systems: oxidation of tyrosine units in peptides and proteins. Arch Biochem Biophys. 1985 Nov 15;243(1):125–134. doi: 10.1016/0003-9861(85)90780-5. [DOI] [PubMed] [Google Scholar]
  51. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
  52. Sampson J. B., Ye Y., Rosen H., Beckman J. S. Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide. Arch Biochem Biophys. 1998 Aug 15;356(2):207–213. doi: 10.1006/abbi.1998.0772. [DOI] [PubMed] [Google Scholar]
  53. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  54. Silvagno F., Xia H., Bredt D. S. Neuronal nitric-oxide synthase-mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem. 1996 May 10;271(19):11204–11208. doi: 10.1074/jbc.271.19.11204. [DOI] [PubMed] [Google Scholar]
  55. Squier T. C., Bigelow D. J., Garcia de Ancos J., Inesi G. Localization of site-specific probes on the Ca-ATPase of sarcoplasmic reticulum using fluorescence energy transfer. J Biol Chem. 1987 Apr 5;262(10):4748–4754. [PubMed] [Google Scholar]
  56. Stadtman E. R. Protein oxidation and aging. Science. 1992 Aug 28;257(5074):1220–1224. doi: 10.1126/science.1355616. [DOI] [PubMed] [Google Scholar]
  57. Stoyanovsky D., Murphy T., Anno P. R., Kim Y. M., Salama G. Nitric oxide activates skeletal and cardiac ryanodine receptors. Cell Calcium. 1997 Jan;21(1):19–29. doi: 10.1016/s0143-4160(97)90093-2. [DOI] [PubMed] [Google Scholar]
  58. Thorley-Lawson D. A., Green N. M. Studies on the location and orientation of proteins in the sarcoplasmic reticulum. Eur J Biochem. 1973 Dec 17;40(2):403–413. doi: 10.1111/j.1432-1033.1973.tb03209.x. [DOI] [PubMed] [Google Scholar]
  59. Thorley-Lawson D. A., Green N. M. The reactivity of the thiol groups of the adenosine triphosphatase of sarcoplasmic reticulum and their location on tryptic fragments of the molecule. Biochem J. 1977 Dec 1;167(3):739–748. doi: 10.1042/bj1670739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Viner R. I., Ferrington D. A., Aced G. I., Miller-Schlyer M., Bigelow D. J., Schöneich C. In vivo aging of rat skeletal muscle sarcoplasmic reticulum Ca-ATPase. Chemical analysis and quantitative simulation by exposure to low levels of peroxyl radicals. Biochim Biophys Acta. 1997 Oct 23;1329(2):321–335. doi: 10.1016/s0005-2736(97)00125-9. [DOI] [PubMed] [Google Scholar]
  61. Viner R. I., Ferrington D. A., Hühmer A. F., Bigelow D. J., Schöneich C. Accumulation of nitrotyrosine on the SERCA2a isoform of SR Ca-ATPase of rat skeletal muscle during aging: a peroxynitrite-mediated process? FEBS Lett. 1996 Feb 5;379(3):286–290. doi: 10.1016/0014-5793(95)01530-2. [DOI] [PubMed] [Google Scholar]
  62. Viner R. I., Hühmer A. F., Bigelow D. J., Schöneich C. The oxidative inactivation of sarcoplasmic reticulum Ca(2+)-ATPase by peroxynitrite. Free Radic Res. 1996 Apr;24(4):243–259. doi: 10.3109/10715769609088022. [DOI] [PubMed] [Google Scholar]
  63. Voss J., Jones L. R., Thomas D. D. The physical mechanism of calcium pump regulation in the heart. Biophys J. 1994 Jul;67(1):190–196. doi: 10.1016/S0006-3495(94)80469-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Wu K. D., Lytton J. Molecular cloning and quantification of sarcoplasmic reticulum Ca(2+)-ATPase isoforms in rat muscles. Am J Physiol. 1993 Feb;264(2 Pt 1):C333–C341. doi: 10.1152/ajpcell.1993.264.2.C333. [DOI] [PubMed] [Google Scholar]
  65. Zhang P., Toyoshima C., Yonekura K., Green N. M., Stokes D. L. Structure of the calcium pump from sarcoplasmic reticulum at 8-A resolution. Nature. 1998 Apr 23;392(6678):835–839. doi: 10.1038/33959. [DOI] [PubMed] [Google Scholar]
  66. Zubrzycka-Gaarn E., Korczak B., Osinska H., Sarzala M. G. Studies on sarcoplasmic reticulum from slow-twitch muscle. J Muscle Res Cell Motil. 1982 Jun;3(2):191–212. doi: 10.1007/BF00711942. [DOI] [PubMed] [Google Scholar]
  67. le Maire M., Lund S., Viel A., Champeil P., Moller J. V. Ca2(+)-induced conformational changes and location of Ca2+ transport sites in sarcoplasmic reticulum Ca2(+)-ATPase as detected by the use of proteolytic enzyme (V8). J Biol Chem. 1990 Jan 15;265(2):1111–1123. [PubMed] [Google Scholar]
  68. van der Vliet A., Eiserich J. P., O'Neill C. A., Halliwell B., Cross C. E. Tyrosine modification by reactive nitrogen species: a closer look. Arch Biochem Biophys. 1995 Jun 1;319(2):341–349. doi: 10.1006/abbi.1995.1303. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES