Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jun 15;340(Pt 3):715–722.

Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially.

H P Ciolino 1, P J Daschner 1, G C Yeh 1
PMCID: PMC1220303  PMID: 10359656

Abstract

Transcriptional activation of the human CYP1A1 gene (coding for cytochrome P450 1A1) is mediated by the aryl hydrocarbon receptor (AhR). In the present study we have examined the effect of the common dietary polyphenolic compounds quercetin and kaempferol on the transcription of CYP1A1 and the function of the AhR in MCF-7 human breast cancer cells. Quercetin caused a time- and concentration-dependent increase in the amount of CYP1A1 mRNA and CYP1A1 enzyme activity in MCF-7 cells. The increase in CYP1A1 mRNA caused by quercetin was prevented by the transcription inhibitor actinomycin D. Quercetin also caused an increase in the transcription of a chloramphenicol reporter vector containing the CYP1A1 promoter. Quercetin failed to induce CYP1A1 enzyme activity in AhR-deficient MCF-7 cells. Gel retardation studies demonstrated that quercetin activated the ability of the AhR to bind to an oligonucleotide containing the xenobiotic-responsive element (XRE) of the CYP1A1 promoter. These results indicate that quercetin's effect is mediated by the AhR. Kaempferol did not affect CYP1A1 expression by itself but it inhibited the transcription of CYP1A1 induced by the prototypical AhR ligand 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), as measured by a decrease in TCDD-induced CYP1A1 promoter-driven reporter vector activity, and CYP1A1 mRNA in cells. Kaempferol also abolished TCDD-induced XRE binding in a gel-shift assay. Both compounds were able to compete with TCDD for binding to a cytosolic extract of MCF-7 cells. Known ligands of the AhR are, for the most part, man-made compounds such as halogenated and polycyclic aromatic hydrocarbons. These results demonstrate that the dietary flavonols quercetin and kaempferol are natural, dietary ligands of the AhR that exert different effects on CYP1A1 transcription.

Full Text

The Full Text of this article is available as a PDF (244.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balasubramanian S., Govindasamy S. Inhibitory effect of dietary flavonol quercetin on 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Carcinogenesis. 1996 Apr;17(4):877–879. doi: 10.1093/carcin/17.4.877. [DOI] [PubMed] [Google Scholar]
  2. Bjeldanes L. F., Kim J. Y., Grose K. R., Bartholomew J. C., Bradfield C. A. Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9543–9547. doi: 10.1073/pnas.88.21.9543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradfield C. A., Bjeldanes L. F. Structure-activity relationships of dietary indoles: a proposed mechanism of action as modifiers of xenobiotic metabolism. J Toxicol Environ Health. 1987;21(3):311–323. doi: 10.1080/15287398709531021. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Brown J. E., Khodr H., Hider R. C., Rice-Evans C. A. Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem J. 1998 Mar 15;330(Pt 3):1173–1178. doi: 10.1042/bj3301173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cao G., Sofic E., Prior R. L. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med. 1997;22(5):749–760. doi: 10.1016/s0891-5849(96)00351-6. [DOI] [PubMed] [Google Scholar]
  7. Carver L. A., Hogenesch J. B., Bradfield C. A. Tissue specific expression of the rat Ah-receptor and ARNT mRNAs. Nucleic Acids Res. 1994 Aug 11;22(15):3038–3044. doi: 10.1093/nar/22.15.3038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen I., Safe S., Bjeldanes L. Indole-3-carbinol and diindolylmethane as aryl hydrocarbon (Ah) receptor agonists and antagonists in T47D human breast cancer cells. Biochem Pharmacol. 1996 Apr 26;51(8):1069–1076. doi: 10.1016/0006-2952(96)00060-3. [DOI] [PubMed] [Google Scholar]
  9. Chen Y. H., Tukey R. H. Protein kinase C modulates regulation of the CYP1A1 gene by the aryl hydrocarbon receptor. J Biol Chem. 1996 Oct 18;271(42):26261–26266. doi: 10.1074/jbc.271.42.26261. [DOI] [PubMed] [Google Scholar]
  10. Christou M., Savas U., Spink D. C., Gierthy J. F., Jefcoate C. R. Co-expression of human CYP1A1 and a human analog of cytochrome P450-EF in response to 2,3,7,8-tetrachloro-dibenzo-p-dioxin in the human mammary carcinoma-derived MCF-7 cells. Carcinogenesis. 1994 Apr;15(4):725–732. doi: 10.1093/carcin/15.4.725. [DOI] [PubMed] [Google Scholar]
  11. Ciolino H. P., Daschner P. J., Wang T. T., Yeh G. C. Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Biochem Pharmacol. 1998 Jul 15;56(2):197–206. doi: 10.1016/s0006-2952(98)00143-9. [DOI] [PubMed] [Google Scholar]
  12. Denison M. S., Fisher J. M., Whitlock J. P., Jr The DNA recognition site for the dioxin-Ah receptor complex. Nucleotide sequence and functional analysis. J Biol Chem. 1988 Nov 25;263(33):17221–17224. [PubMed] [Google Scholar]
  13. Dzeletovic N., McGuire J., Daujat M., Tholander J., Ema M., Fujii-Kuriyama Y., Bergman J., Maurel P., Poellinger L. Regulation of dioxin receptor function by omeprazole. J Biol Chem. 1997 May 9;272(19):12705–12713. doi: 10.1074/jbc.272.19.12705. [DOI] [PubMed] [Google Scholar]
  14. Döhr O., Vogel C., Abel J. Different response of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-sensitive genes in human breast cancer MCF-7 and MDA-MB 231 cells. Arch Biochem Biophys. 1995 Aug 20;321(2):405–412. doi: 10.1006/abbi.1995.1411. [DOI] [PubMed] [Google Scholar]
  15. Emi Y., Ikushiro S., Iyanagi T. Xenobiotic responsive element-mediated transcriptional activation in the UDP-glucuronosyltransferase family 1 gene complex. J Biol Chem. 1996 Feb 16;271(7):3952–3958. doi: 10.1074/jbc.271.7.3952. [DOI] [PubMed] [Google Scholar]
  16. FitzGerald C. T., Fernandez-Salguero P., Gonzalez F. J., Nebert D. W., Puga A. Differential regulation of mouse Ah receptor gene expression in cell lines of different tissue origins. Arch Biochem Biophys. 1996 Sep 1;333(1):170–178. doi: 10.1006/abbi.1996.0378. [DOI] [PubMed] [Google Scholar]
  17. Gasiewicz T. A., Kende A. S., Rucci G., Whitney B., Willey J. J. Analysis of structural requirements for Ah receptor antagonist activity: ellipticines, flavones, and related compounds. Biochem Pharmacol. 1996 Dec 13;52(11):1787–1803. doi: 10.1016/s0006-2952(96)00600-4. [DOI] [PubMed] [Google Scholar]
  18. Hankinson O. The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol. 1995;35:307–340. doi: 10.1146/annurev.pa.35.040195.001515. [DOI] [PubMed] [Google Scholar]
  19. Heath-Pagliuso S., Rogers W. J., Tullis K., Seidel S. D., Cenijn P. H., Brouwer A., Denison M. S. Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry. 1998 Aug 18;37(33):11508–11515. doi: 10.1021/bi980087p. [DOI] [PubMed] [Google Scholar]
  20. Hertog M. G., Hollman P. C., Katan M. B., Kromhout D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr Cancer. 1993;20(1):21–29. doi: 10.1080/01635589309514267. [DOI] [PubMed] [Google Scholar]
  21. Hollman P. C., Katan M. B. Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother. 1997;51(8):305–310. doi: 10.1016/s0753-3322(97)88045-6. [DOI] [PubMed] [Google Scholar]
  22. Hollman P. C., Katan M. B. Bioavailability and health effects of dietary flavonols in man. Arch Toxicol Suppl. 1998;20:237–248. doi: 10.1007/978-3-642-46856-8_21. [DOI] [PubMed] [Google Scholar]
  23. Hollman P. C., van Trijp J. M., Buysman M. N., van der Gaag M. S., Mengelers M. J., de Vries J. H., Katan M. B. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett. 1997 Nov 24;418(1-2):152–156. doi: 10.1016/s0014-5793(97)01367-7. [DOI] [PubMed] [Google Scholar]
  24. Kennedy S. W., Jones S. P. Simultaneous measurement of cytochrome P4501A catalytic activity and total protein concentration with a fluorescence plate reader. Anal Biochem. 1994 Oct;222(1):217–223. doi: 10.1006/abio.1994.1476. [DOI] [PubMed] [Google Scholar]
  25. Kleman M. I., Overvik E., Mason G. G., Gustafsson J. A. In vitro activation of the dioxin receptor to a DNA-binding form by food-borne heterocyclic amines. Carcinogenesis. 1992 Sep;13(9):1619–1624. doi: 10.1093/carcin/13.9.1619. [DOI] [PubMed] [Google Scholar]
  26. Kühnau J. The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet. 1976;24:117–191. [PubMed] [Google Scholar]
  27. Lee I. J., Jeong K. S., Roberts B. J., Kallarakal A. T., Fernandez-Salguero P., Gonzalez F. J., Song B. J. Transcriptional induction of the cytochrome P4501A1 gene by a thiazolium compound, YH439. Mol Pharmacol. 1996 Jun;49(6):980–988. [PubMed] [Google Scholar]
  28. Lu Y. F., Santostefano M., Cunningham B. D., Threadgill M. D., Safe S. Substituted flavones as aryl hydrocarbon (Ah) receptor agonists and antagonists. Biochem Pharmacol. 1996 Apr 26;51(8):1077–1087. doi: 10.1016/0006-2952(96)00063-9. [DOI] [PubMed] [Google Scholar]
  29. Manach C., Morand C., Texier O., Favier M. L., Agullo G., Demigné C., Régérat F., Rémésy C. Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin. J Nutr. 1995 Jul;125(7):1911–1922. doi: 10.1093/jn/125.7.1911. [DOI] [PubMed] [Google Scholar]
  30. McGregor D. B., Partensky C., Wilbourn J., Rice J. M. An IARC evaluation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans as risk factors in human carcinogenesis. Environ Health Perspect. 1998 Apr;106 (Suppl 2):755–760. doi: 10.1289/ehp.98106755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moore M., Wang X., Lu Y. F., Wormke M., Craig A., Gerlach J. H., Burghardt R., Barhoumi R., Safe S. Benzo[a]pyrene-resistant MCF-7 human breast cancer cells. A unique aryl hydrocarbon-nonresponsive clone. J Biol Chem. 1994 Apr 22;269(16):11751–11759. [PubMed] [Google Scholar]
  32. Mukhtar H., Das M., Khan W. A., Wang Z. Y., Bik D. P., Bickers D. R. Exceptional activity of tannic acid among naturally occurring plant phenols in protecting against 7,12-dimethylbenz(a)anthracene-, benzo(a)pyrene-, 3-methylcholanthrene-, and N-methyl-N-nitrosourea-induced skin tumorigenesis in mice. Cancer Res. 1988 May 1;48(9):2361–2365. [PubMed] [Google Scholar]
  33. Peltonen K., Dipple A. Polycyclic aromatic hydrocarbons: chemistry of DNA adduct formation. J Occup Environ Med. 1995 Jan;37(1):52–58. doi: 10.1097/00043764-199501000-00008. [DOI] [PubMed] [Google Scholar]
  34. Phelan D., Winter G. M., Rogers W. J., Lam J. C., Denison M. S. Activation of the Ah receptor signal transduction pathway by bilirubin and biliverdin. Arch Biochem Biophys. 1998 Sep 1;357(1):155–163. doi: 10.1006/abbi.1998.0814. [DOI] [PubMed] [Google Scholar]
  35. Poellinger L., Lund J., Dahlberg E., Gustafsson J. A. A hydroxylapatite microassay for receptor binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3-methylcholanthrene in various target tissues. Anal Biochem. 1985 Feb 1;144(2):371–384. doi: 10.1016/0003-2697(85)90130-7. [DOI] [PubMed] [Google Scholar]
  36. Raha A., Reddy V., Houser W., Bresnick E. Binding characteristics of 4S PAH-binding protein and Ah receptor from rats and mice. J Toxicol Environ Health. 1990;29(4):339–355. doi: 10.1080/15287399009531397. [DOI] [PubMed] [Google Scholar]
  37. Reiners J. J., Jr, Lee J. Y., Clift R. E., Dudley D. T., Myrand S. P. PD98059 is an equipotent antagonist of the aryl hydrocarbon receptor and inhibitor of mitogen-activated protein kinase kinase. Mol Pharmacol. 1998 Mar;53(3):438–445. doi: 10.1124/mol.53.3.438. [DOI] [PubMed] [Google Scholar]
  38. Rosenthal N. Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol. 1987;152:704–720. doi: 10.1016/0076-6879(87)52075-4. [DOI] [PubMed] [Google Scholar]
  39. Sadar M. D., Westlind A., Blomstrand F., Andersson T. B. Induction of CYP1A1 by GABA receptor ligands. Biochem Biophys Res Commun. 1996 Dec 4;229(1):231–237. doi: 10.1006/bbrc.1996.1785. [DOI] [PubMed] [Google Scholar]
  40. Shimada T., Gillam E. M., Sutter T. R., Strickland P. T., Guengerich F. P., Yamazaki H. Oxidation of xenobiotics by recombinant human cytochrome P450 1B1. Drug Metab Dispos. 1997 May;25(5):617–622. [PubMed] [Google Scholar]
  41. Sogawa K., Fujisawa-Sehara A., Yamane M., Fujii-Kuriyama Y. Location of regulatory elements responsible for drug induction in the rat cytochrome P-450c gene. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8044–8048. doi: 10.1073/pnas.83.21.8044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sousa R. L., Marletta M. A. Inhibition of cytochrome P-450 activity in rat liver microsomes by the naturally occurring flavonoid, quercetin. Arch Biochem Biophys. 1985 Jul;240(1):345–357. doi: 10.1016/0003-9861(85)90040-2. [DOI] [PubMed] [Google Scholar]
  43. Uda Y., Price K. R., Williamson G., Rhodes M. J. Induction of the anticarcinogenic marker enzyme, quinone reductase, in murine hepatoma cells in vitro by flavonoids. Cancer Lett. 1997 Dec 9;120(2):213–216. doi: 10.1016/s0304-3835(97)00311-x. [DOI] [PubMed] [Google Scholar]
  44. Wang X., Thomsen J. S., Santostefano M., Rosengren R., Safe S., Perdew G. H. Comparative properties of the nuclear aryl hydrocarbon (Ah) receptor complex from several human cell lines. Eur J Pharmacol. 1995 Oct 6;293(3):191–205. doi: 10.1016/s0922-4106(05)80044-6. [DOI] [PubMed] [Google Scholar]
  45. Whitlock J. P., Jr, Chichester C. H., Bedgood R. M., Okino S. T., Ko H. P., Ma Q., Dong L., Li H., Clarke-Katzenberg R. Induction of drug-metabolizing enzymes by dioxin. Drug Metab Rev. 1997 Nov;29(4):1107–1127. doi: 10.3109/03602539709002245. [DOI] [PubMed] [Google Scholar]
  46. Wilhelmsson A., Whitelaw M. L., Gustafsson J. A., Poellinger L. Agonistic and antagonistic effects of alpha-naphthoflavone on dioxin receptor function. Role of the basic region helix-loop-helix dioxin receptor partner factor Arnt. J Biol Chem. 1994 Jul 22;269(29):19028–19033. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES