Abstract
Inorganic pyrophosphate promoted the acidification of an intracellular compartment in permeabilized promastigotes of Leishmania donovani, as measured by Acridine Orange uptake. The proton gradient generated by pyrophosphate was collapsed by addition of nigericin or NH4Cl. Pyrophosphate-driven proton translocation was stimulated by potassium ions, and inhibited by NaF, the pyrophosphate analogues imidodiphosphate and aminomethylenediphosphonate (AMDP), dicyclohexylcarbodiimide, and the thiol reagents p-hydroxymercuribenzoate and N-ethylmaleimide, all at concentrations similar to those that inhibit the plant vacuolar proton-pumping pyrophosphatase (H+-PPase). The proton translocation activity had a pH optimum in the range 7.0-7.5, and was unaffected by bafilomycin A1 (40 nM), concanamycin A (5 nM), sodium o-vanadate (500 microM) and KNO3 (200 mM). AMDP-sensitive pyrophosphate hydrolysis was also detected in promastigotes, and potassium ions also stimulated this activity. Sodium ions disrupted pH gradients established in the presence of ATP but not in the presence of pyrophosphate, and sequential addition of ATP and pyrophosphate resulted in partially additive Acridine Orange accumulation, suggesting that the vacuolar H+-PPase is in a different intracellular compartment from the vacuolar H+-ATPase and Na+/H+ exchanger of L. donovani promastigotes. Separation of promastigote extracts on Percoll gradients yielded a dense fraction that contained H+-PPase activity but lacked ATPase activity and markers for mitochondria, glycosomes and lysosomes. The organelles in this fraction appeared by electron microscopy to consist of electron-dense vacuoles. In summary, these results indicate that, in contrast to plant vacuoles, vacuolar H+-PPase and vacuolar ATPase activities are present in different compartments in L. donovani promastigotes.
Full Text
The Full Text of this article is available as a PDF (213.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benchimol M., De Souza W., Vanderheyden N., Zhong L., Lu H. G., Moreno S. N., Docampo R. Functional expression of a vacuolar-type H+-ATPase in the plasma membrane and intracellular vacuoles of Trypanosoma cruzi. Biochem J. 1998 Jun 15;332(Pt 3):695–702. doi: 10.1042/bj3320695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum J. J. Changes in orthophosphate, pyrophosphate and long-chain polyphosphate levels in Leishmania major promastigotes incubated with and without glucose. J Protozool. 1989 May-Jun;36(3):254–257. doi: 10.1111/j.1550-7408.1989.tb05358.x. [DOI] [PubMed] [Google Scholar]
- Brun R., Schönenberger Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 1979 Sep;36(3):289–292. [PubMed] [Google Scholar]
- Carystinos G. D., MacDonald H. R., Monroy A. F., Dhindsa R. S., Poole R. J. Vacuolar H(+)-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol. 1995 Jun;108(2):641–649. doi: 10.1104/pp.108.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies J. M., Poole R. J., Rea P. A., Sanders D. Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11701–11705. doi: 10.1073/pnas.89.24.11701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Docampo R., Scott D. A., Vercesi A. E., Moreno S. N. Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J. 1995 Sep 15;310(Pt 3):1005–1012. doi: 10.1042/bj3101005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dvorak J. A., Engel J. C., Leapman R. D., Swyt C. R., Pella P. A. Trypanosoma cruzi: elemental composition heterogeneity of cloned stocks. Mol Biochem Parasitol. 1988 Oct;31(1):19–26. doi: 10.1016/0166-6851(88)90141-7. [DOI] [PubMed] [Google Scholar]
- Finbow M. E., Harrison M. A. The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem J. 1997 Jun 15;324(Pt 3):697–712. doi: 10.1042/bj3240697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia C. R., Ann S. E., Tavares E. S., Dluzewski A. R., Mason W. T., Paiva F. B. Acidic calcium pools in intraerythrocytic malaria parasites. Eur J Cell Biol. 1998 Jun;76(2):133–138. doi: 10.1016/S0171-9335(98)80026-5. [DOI] [PubMed] [Google Scholar]
- Kim E. J., Zhen R. G., Rea P. A. Site-directed mutagenesis of vacuolar H(+)-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis. J Biol Chem. 1995 Feb 10;270(6):2630–2635. doi: 10.1074/jbc.270.6.2630. [DOI] [PubMed] [Google Scholar]
- LeFurgey A., Ingram P., Blum J. J. Elemental composition of polyphosphate-containing vacuoles and cytoplasm of Leishmania major. Mol Biochem Parasitol. 1990 Apr;40(1):77–86. doi: 10.1016/0166-6851(90)90081-v. [DOI] [PubMed] [Google Scholar]
- Lu H. G., Zhong L., Chang K. P., Docampo R. Intracellular Ca2+ pool content and signaling and expression of a calcium pump are linked to virulence in Leishmania mexicana amazonesis amastigotes. J Biol Chem. 1997 Apr 4;272(14):9464–9473. doi: 10.1074/jbc.272.14.9464. [DOI] [PubMed] [Google Scholar]
- Lu H. G., Zhong L., de Souza W., Benchimol M., Moreno S., Docampo R. Ca2+ content and expression of an acidocalcisomal calcium pump are elevated in intracellular forms of Trypanosoma cruzi. Mol Cell Biol. 1998 Apr;18(4):2309–2323. doi: 10.1128/mcb.18.4.2309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundin M., Deopujari S. W., Lichko L., da Silva L. P., Baltscheffsky H. Characterization of a mitochondrial inorganic pyrophosphatase in Saccharomyces cerevisiae. Biochim Biophys Acta. 1992 Jan 16;1098(2):217–223. doi: 10.1016/s0005-2728(05)80339-1. [DOI] [PubMed] [Google Scholar]
- Maeshima M. H(+)-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur J Biochem. 1991 Feb 26;196(1):11–17. doi: 10.1111/j.1432-1033.1991.tb15779.x. [DOI] [PubMed] [Google Scholar]
- Maeshima M., Yoshida S. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem. 1989 Nov 25;264(33):20068–20073. [PubMed] [Google Scholar]
- Moreno S. N., Zhong L. Acidocalcisomes in Toxoplasma gondii tachyzoites. Biochem J. 1996 Jan 15;313(Pt 2):655–659. doi: 10.1042/bj3130655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakanishi Y., Maeshima M. Molecular cloning of vacuolar H(+)-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean. Plant Physiol. 1998 Feb;116(2):589–597. doi: 10.1104/pp.116.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rea P. A., Britten C. J., Jennings I. R., Calvert C. M., Skiera L. A., Leigh R. A., Sanders D. Regulation of vacuolar h-pyrophosphatase by free calcium : a reaction kinetic analysis. Plant Physiol. 1992 Dec;100(4):1706–1715. doi: 10.1104/pp.100.4.1706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rea P. A., Poole R. J. Proton-Translocating Inorganic Pyrophosphatase in Red Beet (Beta vulgaris L.) Tonoplast Vesicles. Plant Physiol. 1985 Jan;77(1):46–52. doi: 10.1104/pp.77.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ros R., Romieu C., Gibrat R., Grignon C. The plant inorganic pyrophosphatase does not transport K+ in vacuole membrane vesicles multilabeled with fluorescent probes for H+, K+, and membrane potential. J Biol Chem. 1995 Mar 3;270(9):4368–4374. doi: 10.1074/jbc.270.9.4368. [DOI] [PubMed] [Google Scholar]
- Sato M. H., Kasahara M., Ishii N., Homareda H., Matsui H., Yoshida M. Purified vacuolar inorganic pyrophosphatase consisting of a 75-kDa polypeptide can pump H+ into reconstituted proteoliposomes. J Biol Chem. 1994 Mar 4;269(9):6725–6728. [PubMed] [Google Scholar]
- Scott D. A., Docampo R., Dvorak J. A., Shi S., Leapman R. D. In situ compositional analysis of acidocalcisomes in Trypanosoma cruzi. J Biol Chem. 1997 Oct 31;272(44):28020–28029. doi: 10.1074/jbc.272.44.28020. [DOI] [PubMed] [Google Scholar]
- Scott D. A., Docampo R. Two types of H+-ATPase are involved in the acidification of internal compartments in Trypanosoma cruzi. Biochem J. 1998 Apr 15;331(Pt 2):583–589. doi: 10.1042/bj3310583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott D. A., Moreno S. N., Docampo R. Ca2+ storage in Trypanosoma brucei: the influence of cytoplasmic pH and importance of vacuolar acidity. Biochem J. 1995 Sep 15;310(Pt 3):789–794. doi: 10.1042/bj3100789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott D. A., de Souza W., Benchimol M., Zhong L., Lu H. G., Moreno S. N., Docampo R. Presence of a plant-like proton-pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi. J Biol Chem. 1998 Aug 21;273(34):22151–22158. doi: 10.1074/jbc.273.34.22151. [DOI] [PubMed] [Google Scholar]
- Vercesi A. E., Docampo R. Sodium-proton exchange stimulates Ca2+ release from acidocalcisomes of Trypanosoma brucei. Biochem J. 1996 Apr 1;315(Pt 1):265–270. doi: 10.1042/bj3150265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vercesi A. E., Grijalba M. T., Docampo R. Inhibition of Ca2+ release from Trypanosoma brucei acidocalcisomes by 3,5-dibutyl-4-hydroxytoluene: role of the Na+/H+ exchanger. Biochem J. 1997 Dec 1;328(Pt 2):479–482. doi: 10.1042/bj3280479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vercesi A. E., Moreno S. N., Docampo R. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J. 1994 Nov 15;304(Pt 1):227–233. doi: 10.1042/bj3040227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vickerman K., Tetley L. Recent ultrastructural studies on trypanosomes. Ann Soc Belg Med Trop. 1977;57(4-5):441–457. [PubMed] [Google Scholar]
- Wang Y., Leigh R. A., Kaestner K. H., Sze H. Electrogenic h-pumping pyrophosphatase in tonoplast vesicles of oat roots. Plant Physiol. 1986 Jun;81(2):497–502. doi: 10.1104/pp.81.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb M. R. A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4884–4887. doi: 10.1073/pnas.89.11.4884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson J., McLaren D. J. Localization of phosphatases in Trypanosoma rhodesiense. J Protozool. 1981 Nov;28(4):460–467. doi: 10.1111/j.1550-7408.1981.tb05320.x. [DOI] [PubMed] [Google Scholar]
- Zhen R. G., Baykov A. A., Bakuleva N. P., Rea P. A. Aminomethylenediphosphonate: A Potent Type-Specific Inhibitor of Both Plant and Phototrophic Bacterial H+-Pyrophosphatases. Plant Physiol. 1994 Jan;104(1):153–159. doi: 10.1104/pp.104.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhen R. G., Baykov A. A., Bakuleva N. P., Rea P. A. Aminomethylenediphosphonate: A Potent Type-Specific Inhibitor of Both Plant and Phototrophic Bacterial H+-Pyrophosphatases. Plant Physiol. 1994 Jan;104(1):153–159. doi: 10.1104/pp.104.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhen R. G., Kim E. J., Rea P. A. Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodiimide. J Biol Chem. 1997 Aug 29;272(35):22340–22348. doi: 10.1074/jbc.272.35.22340. [DOI] [PubMed] [Google Scholar]
- Zhen R. G., Kim E. J., Rea P. A. Localization of cytosolically oriented maleimide-reactive domain of vacuolar H(+)-pyrophosphatase. J Biol Chem. 1994 Sep 16;269(37):23342–23350. [PubMed] [Google Scholar]